IWOTA 2020 Lancaster
Special session at IWOTA 2020 Lancaster: Spectral theory and differential operators, see the conference page here.
Abstract:
We analyse discrete Schrödinger operators \(H_{\lambda,\alpha,\theta} : \ell^p(\mathbb{Z}) \rightarrow \ell^p(\mathbb{Z})\), \(p \in [1, \infty] \), with Sturmian potential, namely, $$ (H_{\lambda,\alpha,\theta} x)n = x{n+1} + x_{n-1} + \lambda v_{\alpha,\theta}(n) x_n ~ , \quad n \in \mathbb{Z} ~, $$ where $$ v_{\alpha,\theta} (n) = \chi_{[1-\alpha,1)}(n\alpha+\theta \mod 1) $$ with coupling constant \(\lambda\in\mathbb{R}\), irrational slope \(\alpha\in [0,1]\) and \(\theta \in [0,1)\). The already mentioned Fibonacci Hamiltonian arises when choosing \(\alpha=\frac 12(\sqrt 5-1)\).
We introduce the finite section method, which is often used to solve operator equations approximately, and apply it first to periodic Schrödinger operators. It turns out that the applicability of the method is always guaranteed for integer-valued potentials provided that the operator is invertible. By using periodic approximations, we find a necessary and sufficient condition for the applicability of the finite section method for aperiodic Schrödinger operators and a numerical method to check it. This talk is based on https://arxiv.org/abs/2104.00711.
Posts in this series
- EPS 2021
- Bundestagwahl 2021
- IWOTA 2020 Lancaster
- EAMS 2021
- Functional Analysis and Operator Theory - Winter Term 2015/2016
- Linear Algebra- Winter Term 2018/2019
- Markdown Syntax Guide
- Mathematik Für Ingenieure A3 (Wiederholertutorium Mathe A3)
- Mathematik Für Ingenieure B3
- Mathematik Für Physiker 2 - Sommersemester 2016
- Mathematik Für Physiker 2a - Sommersemester 2012
- Mathematik Für Physiker IIb