

Example:
$$\sum_{k=1}^{\infty} \frac{1}{k!} = \frac{1}{(k!+1)!} = \frac{1}{(k!+1)!} = \frac{1}{k!} \leq \frac{1}{2}$$
 for all $k \geq 1$.
Yes: (by ratio test)
Warning: $\left|\frac{a_{k+4}}{a_k}\right| < 1$ is not enough:
Root test: If there is $n_0 \in \mathbb{N}$ and $q \in [0,1)$ such that
 $\frac{k[a_k]}{k!} \leq q$ for all $k \geq n_0$,
then $\sum_{k=1}^{\infty} a_k$ is abs. convergent:
Proof: $\frac{k[a_k]}{k!} \leq q \iff |a_k| \leq q^k$
Example: $\sum_{k=1}^{\infty} \left(\frac{3}{12+k}\right)^{2k}$ convergent? $\frac{k}{(\frac{3}{12+k})^{2k}} = \left(\frac{3}{(\frac{3}{12+k})^2}\right)^2 = \frac{3}{2+k} \leq \frac{3}{10}$
Yes, by root test: $\frac{1}{k} = \frac{1}{k} = \frac{3}{k} = \frac{3}{k$