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9.2 Singular value decomposition

In the diagonalisation and in the Jordan decomposition, we had three parts in the form
A = UDV . There we had

U and V are inverse to each other.

Now, if we drop that condition, we can actually fulfil the following two properties even
for rectangle matrices

(1) D is diagonal,

(2) U and V are unitary square matrices.

Since we allow U and V to be any square matrices, which means U ∈ Fn×n and V ∈ Fm×m,
we can consider an arbitrary rectangular matrix A ∈ Fm×n.

Singular value decomposition of A
n

m A

arbitrary

m

= m U

unitary

n

· m Σ

diagonal

n

· n V ∗

unitary

. (9.3)

The word “diagonal” for a rectangular matrix Σ is of course not literally correct. It means
the following here:

Σ =

n

s1
. . .

m sn

if m ≥ n

or Σ =

n

s1

m
. . .

sm

if m ≤ n

, (9.4)

where every other entry is zero.

The equation A = UΣV ∗ tells us that A and Σ are equivalent matrices, A ∼ Σ. The
matrix A is the matrix representation of the linear map � := fA : Fn → Fm given by
x �→ Ax with respect to the standard bases B in Fn and C in Fm. The change of basis
to an ONB V = (v1, . . . ,vn) in Fn and an ONB U = (u1, . . . ,um) in Fm gives us another
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matrix represenation �U←V which is the “diagonal” matrix from (9.4):

�C←B����
A

= TC←U� �� �
U

�U←V� �� �
Σ

TV←B� �� �
V ∗

with

U =

�
u1 · · · um

�
= TC←U , V =

�
v1 · · · vn

�
= TB←V , V ∗ = V −1 = TV←B.

Because of A ∼ Σ and the characterisation of equivalences given by Proposition 8.20, we
know rank(Σ) = rank(A) =: r ≤ m,n. Hence, exactly r of the entries si in (9.4) are
non-zero. Of course, we can choose ui, vi in such an order that we have s1, . . . , sr as the
non-zero elements.

Hence, we can see the matrix Σ from (9.4) as the following matrix representation:

Σ = �U←V =




v1 ··· vr vr+1 ··· vn

u1 s1... . . .
ur sr

ur+1...
um




∈ Fm×n (9.5)

Multiplying A = UΣV ∗ from the right with V gets us AV = UΣ.
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Let us look at this in more detail:

�
Av1 · · · Avn

�
= A

�
v1 · · · vn

�
= AV = UΣ

=


u1 · · · um






s1 . . .

sr


 =


s1u1 · · · srur o · · · o


 .

Therefore, we have:

Av1 = s1u1, Av2 = s2u2, . . . , Avr = srur, Avr+1 = o, . . . , Avn = o. (9.6)

Analogously, we get from A∗ = (UΣV ∗)∗ = V Σ∗U∗ that A∗U = V Σ∗ and hence:

A∗u1 = s1v1, . . . , A∗ur = srvr, A∗ur+1 = o, . . . , A∗um = o. (9.7)

From (9.5) or (9.6), we get:

Proposition 9.9. Kernel and range of A

Ker(A) = Ker(�) = Span(vr+1, . . . ,vn), Ker(A)⊥ = Span(v1, . . . ,vr)
Ran(A) = Ran(�) = Span(u1, . . . ,ur), Ran(A)⊥ = Span(ur+1, . . . ,um)

Please recognise the rank-nullity theorem dim(Ker(A)) + dim(Ran(A)) = dim(Fn).

Of course, we see that the decomposition A = UΣV ∗ from (9.3) is useful as a representa-
tion of the corresponding linear map. We will later see how we can use this in applications.
However, the question remains how to get U , V and Σ?

Let us go back to the result: From A = UΣV ∗, we would get:

A∗A = (UΣV ∗)∗(UΣV ∗) = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗ (9.8)
and AA∗ = (UΣV ∗)(UΣV ∗)∗ = UΣV ∗V Σ∗U∗ = UΣΣ∗U∗. (9.9)
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Because of (9.5) and sisi = sisi = |si|2, we have square matrices

Σ∗Σ =

|s1|2
. . .

|sr|2
n

n

and ΣΣ∗ =

|s1|2
. . .

|sr|2
m

m

,

that are also diagonal. Hence, (9.8) and (9.9) show us the unitary diagonalisations of
the square matrices AA∗ and A∗A. Recall that both matrices are self-adjoint and have
by Proposition 6.44 in fact an ONB consisting of eigenvectors. These orthonormal eigen-
vectors (w.r.t to standard inner product!) are chosen as the columns of the matrices U
and V .

Therefore, we find the eigenvalues of A∗A on the diagonal of Σ∗Σ and the eigenvalues of
AA∗ on the diagonal of ΣΣ∗.

Actually, we can choose the number si as we want in F as long as |si|2 is the ith eigenvalue
of A∗A or AA∗. A simple choice is, of course, s1, . . . , sr being real and positive numbers.

In summary, we now have everything for U, V and Σ:

Definition 9.10. Singular values and singular vectors

Let A ∈ Fm×n. The (non-negative) square roots from the eigenvalues of A∗A are
called the singular values of A and we order them from highest to lowest (counted
with multiplicities):

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 .

The vectors from an orthonormal family (v1, . . . ,vn) consisting of eigenvectors of
A∗A, with the same order as for s21, . . . , s2n, are called the right-singular vectors of A.
In the same way, the vectors from an orthonormal family (u1, . . . ,um) consisting of
eigenvectors of AA∗, with the same order as for s21, . . . , s2n, are called the left-singular
vectors of A.

The factorisation
A = UΣV ∗,

given by U = (u1 · · ·um), V = (v1 · · ·vn) and Σ from (9.4), is called the singular
value decomposition of A. In short: SVD.
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To summarise everything, let us state the whole algorithm:

Algorithm for the SVD of A

Given: An arbitrary matrix A ∈ Fm×n.

Wanted: Unitary matrices U ∈ Fm×m, V ∈ Fn×n and diagonal matrix Σ ∈ Rm×n

for the singular value decomposition A = UΣV ∗ of A.

Algorithm:

• Calculate the matrix A∗A and all eigenvalues λ1, . . . ,λn (counted with mul-
tiplicities) and use the ordering such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

• Find an ONB (v1, . . . ,vn) consisting of eigenvectors for A∗A.

• Define r for number of the last non-zero eigenvalue λi.

• For i = 1, . . . , r:

• Set si :=
√
λi.

• Set ui :=
1
si
Avi, cf. (9.6).

• Set sr+1, . . . , sm := 0.

• Add to (u1, . . . ,ur) a family (ur+1, . . . ,um) such that it is an ONB of Fm.

• Set U := (u1 · · ·um), V := (v1 · · ·vn) and Σ as in (9.4) or (9.5).

Rule of thumb: Calculating the singular vectors

• Alternatively, one finds u1, . . . ,um as the eigenvectors of AA∗. However, that
is more costly than using vi if we already have them.

• In the case m < n, AA∗ is smaller than A∗A, hence it is better to calculate the
eigenvalues λi and eigenvectors ui of the matrix A∗A and to use (9.7) for getting
vi.

• Depending on the application, the eigenvectors ui and vi for i > r might not be
important (cf. (9.11)).

Example 9.11. Consider the matrix A =
�

1
√
3

−2 0

�
. We have m = n = 2 and F = R.

• Calculate

A∗A =

�
1 −2√
3 0

��
1

√
3

−2 0

�
=

�
5

√
3√

3 3

�

and get det(A∗A− λ1) = (5− λ)(3− λ)− 3 = λ2 − 8λ+ 12 = (λ− 2)(λ− 6).
The eigenvalues of A∗A are (in decreasing order) λ1 = 6 and λ2 = 2.
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• The eigenvector v1 for λ1 = 6: We solve the linear equation: (A∗A− 61)v1 = o,

hence
�
−1

√
3√

3 −3

�
v1 =

�
0
0

�
⇐= v1 =

1

2

�√
3
1

�
(normalised).

Eigenvector v2 for λ2 = 2: We solve the equation (A∗A− 21)v2 = o,

and get
�

3
√
3√

3 1

�
v2 =

�
0
0

�
⇐= v2 =

1

2

�−1√
3

�
(normalised).

Both vectors v1 and v2 are automatically orthogonal (Proposition 6.43).

• Both eigenvalues, λ1 = 6 and λ2 = 2, are non-zero. Hence r = 2.

• Next thing, we calculate s1 :=
√
λ1 =

√
6 and

u1 :=
1

s1
Av1 =

1√
6

�
1

√
3

−2 0

�
1

2

�√
3
1

�
=

1

2
√
6

�
2
√
3

−2
√
3

�
=

1√
2

�
1
−1

�
,

• Then s2 :=
√
λ2 =

√
2 and

u2 :=
1

s2
Av2 =

1√
2

�
1

√
3

−2 0

�
1

2

�−1√
3

�
=

1

2
√
2

�
2
2

�
=

1√
2

�
1
1

�
.

• In summary, we get:

U =
1√
2

�
1 1
−1 1

�
, V =

1

2

�√
3 −1

1
√
3

�
and Σ =

�√
6 0

0
√
2

�
.

Because we started in F = R, we could do the whole calculation inside R.

The unitary matrices U and V are indeed orthogonal matrices if all entries are real and,
by our Definition in 5.29, describe rotations (if det(·) = 1) or reflections (if det(·) = −1).
In the example above, both matrices are rotations: U rotates R2 by −45◦ and V rotates
it by 30◦.

In Chapter 3, we have seen that linear maps fA : R2 → R2 with x �→ Ax can only stretch,
rotate and reflect. Hence, a linear map changes the unit circle into an ellipse or it collapses
into a line or point. By using the SVD, we can explain in more details what happens
exactly. Let us look at our Example 9.11:
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A=UΣV ∗ means: fA= rotating, stretching, rotating

A·
fA

A = UΣV ∗

Σ� �� ��
s1

s2

�
·

V ∗· V · U ·

strechting with
different factors

Rotation Rotation

· e1

e2

·
s1e1

s2e2

· 30◦
v1

v2

·
45◦

s1u1

s2u2

The factorisation A = UΣV ∗ decompose fA in a composition into three maps:

(1) a rotation by −30◦ (that is multiplication by V ∗ = V −1),
(2) stretching separately into two directions (with factors s1 =

√
6 in direction

of the x1-axis and with factor s2 =
√
2 in direction of the x2-axis) and

(3) a rotation by −45◦ (multiplication by U).

The major axis and minor axis of the ellipse, which is construed by fA from the unit
circle, are given by the eigenvectors u1,u2 and the lengths are given by the singular
values s1 and s2.

The singular values si give us the stretching factors in certain (orthogonal) directions.
For the largest singular value, s1, we have

s1 = �s1u1� = �Av1� = max{�Ax� : x ∈ Fn, �x� = 1} =: �A�. (9.10)

The here defined number �A� is the already introduced matrix norm of A. It says how
long the vector Ax ∈ Fm can be at most when x ∈ Fn has length 1. The matrix norm
fulfils the three properties of a norm.
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Now we look at an important application of the SVD. We start with a calculation:

A as sum of r dyadic products

A = UΣV ∗ = U



s1 . . .

sr


V ∗ = U

�


s1


+ · · ·+


 sr



�
V ∗

= U



s1


V ∗ + · · · + U


 sr


V ∗

= s1

�
u1

�
( v∗

1 ) + · · · + sr

�
ur

�
( v∗

r ) =
r�

i=1

siuiv
∗
i (9.11)

As we know, A has rank r. Each of the r terms in (9.11) has rank 1. Depending on the
rate of decay of the singular values

s1 ≥ s2 ≥ · · · ≥ sr > 0

we could omit some terms in the sum (9.11) without changing the matrix so much. We
call this a low-rank matrix approximation of A.

Example 9.12. Let us look at an 8-bit-grey picture with 537× 358 pixels (which shows
the only moon the planet Earth has at the moment):

This can be saved as a matrix A ∈ R537×358 where, in the entries, only integer values
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0, 1, . . . , 255 are allowed.

A =




1 3 7 5 . . . 16 8
3 7 3 3 . . . 11 12
...

...
...

...
6 7 . . . 248 . . . 7 6
...

...
...

...
4 8 8 5 . . . 4 8
4 8 3 3 . . . 6 6
2 3 3 4 . . . 9 9




187 KB

For calculations, we convert the number entries into the range [0, 1] instead [0, 255]. Most
pictures should be full-rank matrices and here we can calculate the rank and actually get
r = n. Now let us write A in the representation given by equation (9.11). Now we stop
the summation instead of after r = 358 steps at k = 50, 30, 10 or 5 terms and we get the
following pictures:

43.8 KB 26.7 KB 8.8 KB 4.4 KB

The decay of the singular values s1 ≥ · · · ≥ s358 below shows us why we already have at
onyl 30 terms in the sum a very good approximation.

The first singular values (s1 ≈ 144, s2 ≈ 50 and s3 ≈ 35) are not shown in the picture,
for obvious reason.

In Example 9.12, we have seen that a given matrix A with rank r = 358 can be well
approximated by matrices Ak with rank k = 50, 30, 10 or 5. For

A =
r�

i=1

siuiv
∗
i and k ∈ {1, . . . , r} we set Ak :=

k�

i=1

siuiv
∗
i .

Ak has rank k and is in fact the best m× n-matrix with rank k for the approximation of
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A. We measure the error of approximation by using the matrix norm in equation (9.10):

�A− Ak� =
���U

�



s1 . . .
sk . . .

sr


−




s1 . . .
sk



�
V ∗

���

=
���U




sk+1 . . .
sr


V ∗

��� = sk+1 (largest singular value left).

In short:

sk+1 = distance of A to the set of all matrices with rank k (9.12)

In particular, s1 is the distance of A to the set of all matrices with rank 0, which consists
only of the zero matrix 0.

At the end, let us take a look at the special case m = n, which means A and Σ are square
matrices. In this case, eigenvalues and singular values are related in the following sense:

• A is invertible if and only if all the singular values are non-zero (see also Proposi-
tion 6.28 for the same claim with eigenvalues).

The smallest singular value of A, sn, gives the distance of A to the set of all n × n-
matrices with rank n − 1 or smaller (which are exactly the singular matrices) by
equation (9.12).

The equation A−1 = (UΣV ∗)−1 = V Σ−1U∗ gives the SVD of A−1. Therefore, the
singular values of A−1 are 1/s1, . . . , 1/sn. The largest of these, meaning 1/sn, is
�A−1�.

• We know from Corollary 9.8 that the product of all eigenvalues of a given matrix A
is exactly det(A). Since

det(A) = det(UΣV ∗) = det(U) det(Σ) det(V ∗) ⇒ | det(A)| = det(Σ) ,

we know that the product of all singular values, which is det(Σ), is equal to the
absolute value of det(A).

• If A is normal, which means A∗A = AA∗, then A can be diagonalised by using a
unitary matrix: A = XDX∗. Then D = diag(d1, . . . , dn) is a diagonal matrix with
the eigenvalues of A as entries and X = (x1 · · ·xn) consists of eigenvectors for A.
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Hence A∗A = XD∗DX∗ = X diag(|d1|2, . . . , |dn|2)X∗. The eigenvalues λi of A∗A
are, on the one hand, given by λi = didi = |di|2 and, on the other hand, they can be
written as λi = s2i by using the singular values si ≥ 0 of A. Therefore, we get:

si = |di|.

The singular values of A are exactly the absolute values of the eigenvalues of A.

Summary
• A lot of techniques in Linear Algebra deal with suitable factorisations of a given

matrix A:

• From Section 3.11.5: The Gaussian elimination are summarised by a left multiplic-
ation with a lower triangular matrix and a permutation matrix P . Hence, PA
is the row echelon form K of A and we have PA = LK with lower triangular matrix
L := −1.

• From Section 5.5: A linearly independent family of vectors (a1, . . . , an) from Fm can
be transformed into an ONS (q1, . . . ,qn) by using the Gram-Schmidt procedure.
Therefore, we have for k = 1, . . . , n always ak ∈ Span(q1, . . . ,qk). For the matrices
A := (a1 . . . an) and Q := (q1 . . . qn) we find A = QR, where R ∈ Fn×n is an
invertible upper triangular matrix.

• If we decompose A into a product UDV , then we have different approaches.

• For diagonalisable matrices, we can choose U = X and V = X−1 where in X the
columns are eigenvectors of A and form a basis. Then D has the eigenvalues of A
on the diagonal, counted with multiplicities. See Chapter 6. We also know that
selfadjoint and even normal matrices A are always diagonalisable, we can choose
eigenvectors in such a way that they form an ONB, which means X∗ = X−1.

• For non-diagonalisable matrices we still can write A = XDX−1 but now D is not
diagonal. We use the Jordan normal form as a substitute. We get the important
result that all (square) matrices A ∈ Cn×n have such a Jordan normal form and
therefore this decomposition. Note that we actually need the complex numbers
here.

• For the singular value decomposition, the two matrices U and V are not connected
such that we can also bring rectangular matrices A into “diagonal” structure. On
the diagonal D (that is often denoted by Σ), we find the so-called singular values
of A. The singular value decomposition is used for low rank approximation.


