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In the diagonalisation and in the Jordan decomposition, we had three parts in the form

A =UDV. There we had
-
U and V' are inverse to each other. (A = u d ¥ )

Now, if we drop that condition, we can actually fulfil the following two properties even
for rectangle matrices

(1) D is diagonal, A = UDv

(2) U and V' are unitary square matrices. ((,,.m_,w_ ‘“{71‘( ad [,_.,JH, )

Since we allow U and V' to be any square matrices, which means U € F™"*"™ and V' € F™*™
we can consider an arbitrary rectangular matrix A € F™*",

e chegul.r "‘;A = U@v*
'S

Singular value decomposition of A

n m n
n
m| A S U m| @Y | A V| (93)
unitary
arbitrary unitary diagonal —
b

The word “diagonal” for a rectangular matrix ¥ is of course not literally correct. It means
the following here:

S1 n
S1

Y =m Sn or Y =m O | (9.4)

0 —

itfm<n

fm>n

where every other entry is zero.

The equation A = UXV™* tells us that A and Y are equivalent matrices, A ~ 3. The
matrix A is the matrix representation of the linear map ¢ := f4 : F* — [F™ given by
x — Ax with respect to the standard bases B in F” and C in F™. The change of basis
toan ONB V = (vy,...,v,) in F" and an ONB U = (uy, ..., u,,) in F™ gives us another
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matrix represenation ¢,y which is the “diagonal” matrix from (9.4):

£C<—B — TC<—M gZxH—V TV<—B
~—~ ~—
A U by V*

> |F
ﬂ /\ S ll "-J&'o‘ 64.1'4_1—

Because of A ~ ¥ and the characterisation of equivalences given by Proposition 8.20, we
know rank(X) = rank(A) =: r < m,n. Hence, exactly r of the entries s; in (9.4) are

non-zero. Of course, we can choose u;, v; in such an order that we have s,

..., S as the
non-zero elements.

Hence, we can see the matrix ¥ from (9.4) as the following matrix representation:

vi > Ve Vpgl o ot Vp

u, s,
Y= lyy =

Multiplying A = UXV* from the right with V' gets us AV = UX.
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AUV & a-us
Let us look at this in more detail:
I I I I
AIVI Arh =A vllvln = AV =UX
\
| | ( il \ | |1
= |u ... u, s, — | s5uy ... s,u0 o
| | ) X ) | |
{
¥
(A Uy - ) —
I Therefore, we have:
Y
A*U :sz Avy = s1wy, Avg =souy, ..., Av,=smw,, Av..1 =0, ..., Avyp=o0. (9.6)
|// Analogously, we get from A* = (UXV*)* = VEX*U* that A*U = VX" and hence:
Fi)
{ A*u; =51vq, ..., A'uw,=35v,, A'w,y1=o0, ..., A'u, =o. (9.7)
Lol
1
From (9.5) or (9.6), we get: F— k.. (Ax) = Ran(A)
e 4
Proposition 9.9. Kernel and range of A L Xercise: Raw (4*) = Kec(A)
Ker(4) = Ker({) = Span(v,i1,...,v,), Ker(4)r = Span(vy,...,v,)
Ran(A) = Ran(f) =Span(uy,...,u,), Ran(A)* = Span(u,ii,...,uy)

Please recognise the rank-nullity theorem dim(Ker(A)) + dim(Ran(A)) = dim(F").

Of course, we see that the decomposition A = UXV* from (9.3) is useful as a representa-
tion of the corresponding linear map. We will later see how we can use this in applications.
However, the question remains how to get U, V' and 7

Let us go back to the result: From A = UXV™, we would get:
* * | %
A=vs™y* 4

AN
A4~ (UZVH)"(UZVY) =VZUUEV =V Ev:
AA*= (USVH)(UZV*) = ULV VEU* =UESU”.
“Np—

4

and




14 ﬂ)“ a)a“ ‘[ ﬁl‘};h 9 Some matrix decompositions
X _ X .3 * x  k
AA =V ESV AR - (1 £ 57

—_——

| Kagen d | iy
Sa(—(« j‘joiu"' S‘I/“J)""J (A ’*/4 )
\§-> A"n/o"-lt‘nu‘ L// “pF ane

Wi 0N o} tismvclors
d el e‘;‘j...w/(u‘.r AkA

Because of (9.5) and 5;s; = 8;5; = |s;|?, we have square matrices

|51]? |51]?
. ‘Srlz . |5r|2
XY = ) n| and XY* = ) m
- N
6 “o
e.'n/_- m

that are also diagonal. Hence, (9.8) and (9.9) show us the unitary diagonalisations of
the square matrices AA* and A*A. Recall that both matrices are self-adjoint and have
by Proposition 6.44 in fact an ONB consisting of eigenvectors. These orthonormal eigen-
vectors (w.r.t to standard inner product!) are chosen as the columns of the matrices U
and V.

Therefore, we find the eigenvalues of A*A on the diagonal of 3*3 and the eigenvalues of
AA* on the diagonal of ¥3*.

Actually, we can choose the number s; as we want in F as long as |s;|* is the ith eigenvalue
of A*A or AA*. A simple choice is, of course, s, ..., s, being real and positive numbers.

In summary, we now have everything for U,V and >:

Definition 9.10. Singular values and singular vectors

Let A € F™*". The (non-negative) square roots from the eigenvalues of A*A are
called the singular values of A and we order them from highest to lowest (counted
with multiplicities):

5>6)> - = 0.

The wvectors from an orthonormal family (v, ... ,.vn) consisting of eigenvectors of

2

A* A, with the same order as for s, ..., s2, are called the right-singular vectors of A.

In the same way, the vectors from an orthonormal family (ay, ..., W) consisting of

eigenvectors of AA*, with the same order as for 82, ..., s2, are called the left-singular

)y On
vectors of A.

The factorisation

A=UIV*,

given by U = (uy - =uy,), V = (vi---v,) and X from (9.4), is called the singular
value decomposition of A. In short: SVD.
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To summarise everything, let us state the whole algorithm:

| Algorithm for the SVD of A

Given: An arbitrary matriz A € F™*",

Wanted: Unitary matrices U € F™™ V. € F"*" and diagonal matrixz ¥ € R™*™
for the singular value decomposition A = UXV* of A.

Algorithm:

e Calculate the matrix A*A and all eigenvalues Ay, ..., N, (counted with mul-
tiplicities) and use the_ordering such that \f > Xy > +-- > A, > 0.

Find an ONB (v, ...,V,) consisting of eigenvectors for A*A.

Define r for number of the last non-zero eigenvalue \;.

/‘VL =5 U;

Fori=1,... (@

-

o Sets;:=~/\. SO
o Setu; := S%Avi, cf. (9.6).

Set Sypi1y-. -y Sm = 0.
Add to (uL ,u,) a family (W11, ..., ) such that it is an ONB of F™.
SetU:=(uy:--uy), V= (vi---v,) and ¥ as in (9.4) or (9.5).

T\m) OWL""S ‘A (4)(‘\‘“‘*/“ JVD of ﬂ— G W

2) (aleJoke SVD of /4)‘-:3 Casical

| Rule of thumb: Calculating the singular vectors

o Alternatively, one finds uy,...,u,, as the eigenvectors of AA*. However, that
is more costly than using v; if we already have them.

A___ ‘ | e In the case'm < n,* s smaller than . hence it is better to calculate the
—_— eigenvalues \; and eigenvectors u; of the matriz A*A and to use (9.7) for getting

El v;.

I:‘j m/ e Depending on the application, the eigenvectors u; and v; for i > r might not be
important (cf. (9.11)).

D E Example 9.11. Consider the matrix A = (i2 ‘/0?:) We have m =n =2 and F = R.

e (Calculate
(5 DD (59 Y,

and get det(A*A— A1) =(5-X)B-N)—-3=X-8\412= (A -2)(A—6).
The eigenvalues of A*A are (in decreasing order) Ay = 6 and Ay = 2.

)42?1 = O
tf W

6 1
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The eigenvector vy for A\; = 6: We solve the linear equation: (A*A — 61)v; = o,

hence <_1 \/§> v = <O> — V] = 1(\/3> (normalised)./

V3 =3 0 - 2N\ 1

Eigenvector vy for Ay = 2: We solve the equation (A*A — 21)vy = o,

S/

wis (@O = L BED i

Both vectors vy and v, are automatically orthogonal (Proposition 6.43).
Both eigenvalues, A\; = 6 and \y = 2, are non-zero. Hence r = 2.
Next thing, we calculate §1 := /A = v/6 and

e CRH S R CORETEE
/

v

()= 2) = 0)

Then sy 1= /Ay = V2 and

1
Uy = _AV2 = L < 1 \/§> 1
S9 2

V2 \-2 o

In summary, we get:

A v )

Because we started in F = R, we could do the whole calculation inside R.

The unitary matrices U and V" are indeed orthogonal matrices if all entries are real and,

by our Definition in 5.29, describe rotations (if det(-) = 1) or reflections (if det(-) = —1).
In the example above, both matrices are rotations: U rotates R? by —45° and V rotates

it by 30°.

In Chapter 3, we have seen that linear maps f4 : R? — R? with x + Ax can only stretch,

rotate and reflect. Hence, a linear map changes the unit circle into an ellipse or it collapses
into a line or point. By using the SVD, we can explain in more details what happens
exactly. Let us look at our Example 9.11:
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| A=UXV* means: fs= rotating, stretching, rotating

( ) ( )

Va2
0 Vi A-
\/ fa
v*l 1&/- A= Uz IU-
Rotation — Rotation
s a > e D
—
€2 S1
(" fz) S2€4 (

different factors

\ /5
strechting with ’ \\ €1

Sc aL‘-:) im
(> C(un,lf..,_l.: d

‘L"‘ec‘l'u.:
The factorisation A = UXV™ decompose f4 in a composition into three maps:

.

.

(1) a rotation by —30° (that is multiplication by V* =V ~1)

(2) stretching separately into two directions (with factors s; = \/6 in direction
of the x1-axis and with factor s, = \/2 in direction of the x4-axis) and

(3) a rotation by —45° (multiplication by U ).

The major axis and minor azis of the ellipse, which is construed by f 4 from the unit
circle, are given by the eigenvectors uy,uy and the lengths are given by the singular
values s1 and $o.

The singular values s; give us the stretching factors in certain (orthogonal) directions.
For the largest singular value, s;, we have

st = st = | Ava]| = max{[[Ax]| : x € F", ] = 1} = 4. (9.10)

The here defined number ||A|| is the already introduced matrix norm of A. It says how
long the vector Ax € F™ can be at most when x € F” has length 1. The matrix norm
fulfils the three properties of a norm.

* > %
—Az Uév = (/( 51\:’_ \/ ,_£=raul~(,4)
n
Y \
{, Small s son o)
* L smll omcs b 2er.

Ak = U % 0. v rank(A) = K
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18 /4}; (ow- Cank “l‘frbx\'uq/"o“ ;7( A

Now we look at an important application of the SVD. We start with a calculation:

| A as sum of r dyadic products

S1 S1
A=USV*=U|( s, V*:U( et 5 )v*
\ |/

=U Vi+ oo + U Sy v

| | !
=5 | M| (—vi—) + -+ s (W|(—v.—) = siu;v; (9.11
1<|>< =) (. (=¥ =) = Ysuvi 011
—

As we know, A has rank r. Each of the r terms in (9.11) has rank 1. Depending on the
rate of decay of the singular values

51> 832+ 2>58.>0

we could omit some terms in the sum (9.11) without changing the matrix so much. We
call this adow=rank matrix approximation of A.

Example 9.12. Let us look at an 8-bit-grey picture with 537 x 358 pixels (which shows
the only moon the planet Earth has at the moment):

0 ~2 é(u}i

las ~> wlu“-r.

This can be saved as a matrix A € R*»7E38 where, in the entries, only integer values
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0,1,...,255 are allowed. rﬂhk(A) - 9¢8

13 7 5 ... 16 8 -
3 7 3 3 11 12

A— 6 7 ... 248 ... 7 6 187 KB
SR : —
48 8 5 ... 4 8
48 3 3 ... 6 6
23 3 4 ... 9 9

For calculations, we convert the number entries into the range [0, 1] instead [0, 255]. Most
pictures should be full-rank matrices and here we can calculate the rank and actually get
r =n. Now let us write A in the representation given by equation (9.11). Now we stop
the summation instead of after r = 358 steps at k = 50, 30, 10 or 5 terms and we get the
following pictures:

43.8 KB 26.7 KB 8.8 KB 4.4 KB

The decay of the singular values s; > - -+ > s358 below shows us why we already have at
on;'l 30 terms in the sum a very good approximation.

20 |

10 —

0 I | I | | |
0 50 100 150 200 250 300 350

The first singular values (s; &~ 144, s, &~ 50 and s3 ~ 35) are not shown in the picture,
for obvious reason.

In Example 9.12, we have seen that a given matrix A with rank r = 358 can be well
approximated by matrices Ay with rank & = 50, 30, 10 or 5. For

T k
A= Zsiuivz‘ and ke {l,...,r} we set Ay = Zsiu,»vf.
i=1

=1

Ay, has rank k and is in fact the best m x n-matrix with rank k for the approximation of
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A. We measure the error of approximation by using the matrix norm in equation (9.10):

S1 S1

la-ad=o(f | |- )

Sy

\ )\ |

Sk+1

= HU V*H = 541 (largest singular value left).

.S,,.

\ L/

In short:

Sp+1 = distance of A to the set of all matrices with rank k (9.12)

In particular, sy is the distance of A to the set of all matrices with rank 0, which consists
only of the zero matrix 0.

At the end, let us take a look at the special case m = n, which means A and X are square
matrices. In this case, eigenvalues and singular values are related in the following sense:

e A is invertible if and only if all the singular values are non-zero (see also Proposi-

tion 6.28 for the same claim with eigenvalues).

The smallest singular value of A, s, gives the distance of A to the set of all n x n-
matrices with rank n — 1 or smaller (which are exactly the singular matrices) by
equation (9.12).

The equation A™! = (UXV*)™! = VE1U* gives the SVD of A~'. Therefore, the
singular values of A™! are 1/sy,...,1/s,. The largest of these, meaning 1/s,, is
A7),

We know from Corollary 9.8 that the product of all eigenvalues of a given matrix A
is exactly det(A). Since

det(A) = det(UXV™) = det(U) det(X) det(V*) = |det(A)| = det(X),
we know that the product of all singular values, which is det(X), is equal to the

absolute value of det(A).

If A is normal, which means A*A = AA*, then A can be diagonalised by using a
unitary matrix: A = XDX*. Then D = diag(dy,...,d,) is a diagonal matrix with
the eigenvalues of A as entries and X = (x;---X,) consists of eigenvectors for A.
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Hence A*A = XD*DX* = X diag(|di[*, ..., |d,*) X*. The eigenvalues \; of A*A
are, on the one hand, given by \; = d;d; = |d;|*> and, on the other hand, they can be
written as \; = s? by using the singular values s; > 0 of A. Therefore, we get:

The singular values of A are exactly the absolute values of the eigenvalues of A.

Summary

e A lot of techniques in Linear Algebra deal with suitable factorisations of a given
matrix A:

e From Section 3.11.5: The Gaussian elimination are summarised by a left multiplic-
ation with a lower triangular matrix I\ and a permutation matrix P. Hence, N PA

is the row echelon form K of A and we have PA = LK with lower triangular matrix
L:=KT!

e From Section 5.5: A linearly independent family of vectors (ay, ..., a,) from F™ can
be transformed into an ONS (qy,...,q,) by using the Gram-Schmidt procedure.
Therefore, we have for k = 1,...,n always a; € Span(qy,...,qx). For the matrices
A:=(a;...a,) and Q := (q1 ... q,) we find A = QR, where R € F"*" is an

invertible upper triangular matrix.
e If we decompose A into a product UDV, then we have different approaches.

e For diagonalisable matrices, we can choose U = X and V = X! where in X the
columns are eigenvectors of A and form a basis. Then D has the eigenvalues of A
on the diagonal, counted with multiplicities. See Chapter 6. We also know that
selfadjoint and even normal matrices A are always diagonalisable, we can choose
eigenvectors in such a way that they form an ONB, which means X* = X!,

e For non-diagonalisable matrices we still can write A = X DX ! but now D is not
diagonal. We use the Jordan normal form as a substitute. We get the important
result that all (square) matrices A € C™*™ have such a Jordan normal form and
therefore this decomposition. Note that we actually need the complex numbers
here.

e For the singular value decomposition, the two matrices U and V' are not connected
such that we can also bring rectangular matrices A into “diagonal” structure. On
the diagonal D (that is often denoted by X)), we find the so-called singular values
of A. The singular value decomposition is used for low rank approximation.



