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(8.20)⇐⇒ (�− λ id)B←B = �B←B − λ idB←B = �B←B − λ1

is not invertible for any basis B of V
⇐⇒ λ is an eigenvalue of �B←B for all bases B of V
⇐⇒ det

�
(�− λ id)B←B

�
= 0 for all bases B of V

⇐⇒ det(�− λ id) = 0
VL23
↓

Example 8.31. (a) The rotation d ∈ L(R2,R2) from Example 8.3 (e) has the determin-
ant 1 since the associated matrix representation(8.12) w.r.t. the standard basis B in
R2:

det(d) = det
�
dB←B

�
= det

�
cosϕ − sinϕ
sinϕ cosϕ

�
= (cosϕ)2 + (sinϕ)2 = 1.

For F = R, we only find eigenvalues and eigenvector if ϕ is an integer multiple of
π. For example, for ϕ = π, we have d = −id and hence each vector in R2 is an
eigenvector for the eigenvalue λ = −1.

(b) For the orthogonal projection projG ∈ L(R3,R3) onto the line G := Span(n) and both
variants

projE = id− projG and reflE = id− 2 projG

from Example 8.7, 8.9, 8.14 (f) and 8.17 (a), we find with the help of equation (8.13):

det(projG) = det



1 0 0
0 0 0
0 0 0


 = 0

Using Example 8.17 (a), we get:

det(projE) = det



0 0 0
0 1 0
0 0 1


 = 0 and det(reflE) = det



−1 0 0
0 1 0
0 0 1


 = −1.

For projG each vector from G is an eigenvector for the eigenvalue 1, and each vector
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from E is an eigenvector for the eigenvalue 0 since E is the kernel of projG. For projE
we have the same with G ↔ E. For reflE each vector from G is an eigenvector for the
eigenvalue −1, and each vector from E is an eigenvector for the eigenvalue 1.

Summary

• A map � from one F-vector space V to another F-vector space W is called linear if
�(x + y) = �(x) + �(y) and �(αx) = α�(x) for all x,y ∈ V and α ∈ F. We write:
� ∈ L(V,W ).

• Linear maps L(V,W ) can be added and scaled with α ∈ F. Hence, L(V,W ) gets an
F-vector space.

• The composition k ◦ � of linear maps � : U → V and k : V → W is linear.

• The inverse map of a bijective linear map is again linear. Therefore a bijective linear
map is called an isomorphism .

• Each linear map � ∈ L(V,W ), between finite dimensional vector spaces V and W ,
can be identified with a matrix. In order to do this, choose a basis B = (b1, . . . ,bn)
in V and a basis C = (c1, . . . , cm) in W . Be using the basis isomorphisms ΦB and
ΦC, we get a linear map Fn → Fm. Such a linear map is also represented by a m×n
matrix �C←B := (�(b1)

C · · · �(bn)
C). It is called the matrix representation of � w.r.t.

B and C.

• The matrix representation of k + � is the sum of both matrix representations.

• The matrix representation of α� is α times the matrix representation of �.

• The matrix representation of k ◦ � is the product of both matrix representations.

• The matrix representation of �−1 is the inverse of the matrix representation of �.

• Kernel and range of a linear map � can be calculated by �C←B.

• By changing the basis of V from B to B� and changing the basis of W from C to C �,
the matrix representation of � : V → W changes from �C←B to �C�←B� . In this case,
we have �C�←B� = TC�←C �C←B TB←B� .

• We call two matrices A and B equivalent and write A ∼ B if there are invertible
matrices S and T with B = SAT .

• We have A ∼ B if and only if rank(A) = rank(B).

• For the special case � : V → V , one often chooses the same basis B left and right.
How does the matrix �B←B change when changing the basis B to B�? Then, we have
S = T−1 in the formula above.

• Two matrices A and B are called similar and one writes A ≈ B if there is an
invertible matrix T with B = T−1AT .

• From A ≈ B follows det(A) = det(B) and spec(A) = spec(B) but the converse is
in general false.

• det(�) for a linear map � : V → V is defined by det(�B←B) for any basis B in V .

• λ ∈ F is an eigenvalue of � : V → V if �(x) = λx for some x ∈ V \ {o}.





9
Some matrix decompositions

9.1 Jordan normal form

We are searching for the best substitute of the usual diagonalisation A = XDX−1 such
that it works for all matrices A ∈ Cn×n. A good thing would be to use a triangular matrix
instead of D if A is not diagonalisable. The next Proposition tells us that we only need
some 1s above the diagonal:

33
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Proposition & Definition 9.1. Jordan normal form

Let A ∈ Cn×n with pairwise different eigenvalues λ1, . . . ,λr ∈ C, where α1, . . . ,αr

denote the corresponding algebraic multiplicities and γ1, . . . , γr the corresponding
geometric multiplicities. Then, there is an invertible matrix X ∈ Cn×n such that

A = XJX−1 or equivalently X−1AX = J

and J ∈ Cn×n has the following block diagonal form:

J =



J1

. . .
Jr


 .

J is called a Jordan normal form (JNF) of A. The entries Ji are again block
matrices, which are called Jordan blocks, and have the following structure:

Ji =



Ji,1

. . .
Ji,γi


 ∈ Cαi×αi ,

where the matrices Ji,� are called Jordan boxes and have the following form:

Ji,� =




λi 1

λi
. . .
. . . 1

λi


 .

Note that Ji,� could also be a 1× 1-matrix.
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Example 9.2. If you have a matrix A ∈ C9×9 and find an invertible matrix X with
A = XJX−1 such that

J =




4 1
4 1

4
4 1

4
J2� �� �

� �� �
J1

−3 1

−3
−3

−3




,

then you immediately find the following informations for A:

On the other hand, we learn that J is not determined solely by eigenvalues and multipli-
cities because also the matrix




4 1
4 1

4 1
4

4
−3 1

−3
−3

−3




would fit to these parameters above

λ1 = 4, α1 = 5, γ1 = 2, λ2 = −3, α2 = 4, γ2 = 3 .
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Construction of J and X: How and why?
First we need the eigenvalues λ1, . . . ,λr of A because on a triangular matrix they have
to be on the diagonal counted with the algebraic multiplicities. So we also determine
α1, . . . ,αr. For each λi, we do the following procedure.

Rule of thumb: Treat the problem for all λi separately.

Each λi has its own Jordan block Ji and corresponding columns in X. Therefore,
we can deal with the problem for each eigenvalue separately and put it together in
the end.

Since A ≈ J , we already know that the characteristic polynomial of A and J coincide
(cf. Proposition 6.26). Hence, both matrices have the same eigenvalues with the same
algebraic multiplicities. They have to be on the diagonal of J by Proposition 6.9.

Size of Ji

The Jordan block Ji for the eigenvalue λi has the size αi ×αi because we need λi as
often on the diagonal of J as the algebraic multiplicity says.

The n columns of X have to be linearly independent vectors from Cn in order that X is
invertible. Just looking at the αi × αi-block Ji, we need αi columns from this matrix X.
How to get them?

Recall that for the diagonalisation, in the case that A is diagonalisable, we had enough
eigenvectors corresponding to the eigenvalue λi, which means vectors from Ker(A− λi1).
We could choose them as a linearly independent family because

dim(Ker(A− λi1)) =: γi = αi.

In the case γi < αi (which means A is not diagonalisable), we are missing some columns
in X.

To shorten everything: A− λi1 =: N

Let us look at an example with αi = 8 and γi = 4. Choose x1, . . . ,x4 ∈ Ker(N), which
are eigenvectors of A.

Ker(N)
dimension: 4 = γi x1,1 x2,1 x3,1 x4,1

We need αi = 8 linearly independent vectors for X but at this point we only have γi = 4.
How to get the missing four vectors?

Answer: Since we have not found enough vectors in the kernel of N , we can look at the
kernels of N 2, N3, ... until we have found 8 vectors in total. Clearly:

Ker(N) ⊂ Ker(N2) ⊂ Ker(N 3) ⊂ · · · , since Nx = o ⇒ N2x = N(Nx) = o, . . .

Recall: Ker(N) has the dimension γi = 4. Suppose that Ker(N 2) is of dimension 7 and
that Ker(N 3) has dimension 8 = αi. The difference

dk := dim(Ker(Nk))− dim(Ker(Nk−1))
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of the dimensions shows us where to find the four missing vectors. Elements from the
spaces Ker(Nk) are called generalised eigenvectors. To be more clear, we call an element
from Ker(Nk)\Ker(Nk−1) a generalised eigenvector of rank k. In this sense, the ordinary
eigenvectors are now generalised eigenvector of rank 1.

Box 9.3. Levels and Jordan chains

Ker(N 3)
dimension: 8 = αi

d3 = 8− 7 = 1

3rd level
x1,3

Ker(N 2)
dimension: 7
d2 = 7− 4 = 3

2nd level
x1,2 x2,2 x3,2

Ker(N 1)
dimension: 4 = γi

1st level

x1,1 x2,1 x3,1 x4,1

1s
t
ch

ai
n

2n
d

ch
ai

n

3r
d

ch
ai

n

4t
h

ch
ai

n

N · N · N ·

N ·

As you can see in the picture, the vectors form “chains”, from top to bottom. We call each
of these sequences a Jordan chain and it will be related to a Jordan box.

Box 9.4. Number and size of the Jordan boxes
Each Jordan chain ends at an ordinary eigenvector xj,1 ∈ Ker(N). Therefore, we
have exactly γi Jordan boxes inside the chosen Jordan block Ji. The length of a
Jordan chain is the size of the corresponding Jordan box. All sizes add up to αi

(here: 8), which is exactly the size of the Jordan block Ji.

Looking at our example, we have 4 Jordan boxes of size 3, 2, 2 and 1. Hence:

Ji = Diag
�


λi 1

λi 1
λi


 ,

�
λi 1

λi

�
,

�
λi 1

λi

�
, (λi)

�
∈ C8×8.

At this point, we now know the whole block Ji. The next step is to find the corresponding
columns of X, which means that we have to calculate the generalised eigenvectors xj,k:

Box 9.5. Generalised eigenvectors: Start the Jordan chain

The starting point xj,k for the jth Jordan chain can be chose in an almost arbitrary
way from the kth level: Let xj,k ∈ Ker(Nk), but

xj,k �∈ Span
�
Ker(Nk−1) ∪ {x1,k, . . . ,xj−1,k}

�
, (9.1)

where x1,k, . . . ,xj−1,k are the vectors from the chains before, 1 to j − 1, which lie
on the same level k. Now you can build the whole chain to the bottom xj,1. We just
have to multiply with N in each step:

For x ∈ Ker(Nk), we have Nx ∈ Ker(N k−1) since o = Nkx = Nk−1(Nx).

Note that equation (9.1) guarantees that all generalised eigenvectors on the kth level are
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linearly independent and that the linear independence remains on the levels below. All
these αi generalised eigenvectors are put as columns into X.

Box 9.6. Columns of X regarding λi

Let Xi ∈ Cn×αi the matrix with columns filled out from left to right:

1st Jordan chain (bottom to top), . . . , γith Jordan chain (bottom to top).

For our example, this means: Xi =
�
x1,1,x1,2,x1,3, x2,1,x2,2, x3,1,x3,2, x4,1

�
∈ Cn×8.

After we did the whole procedure for all eigenvalues λ1, . . . ,λr, the only thing that remains
is:

Put everything together

J :=



J1

. . .
Jr


 ∈ Cn×n and X :=

�
X1, . . . , Xr

�
∈ Cn×n. (9.2)

This is all. Let us summarise the whole story:

Algorithm for calculating a Jordan normal form of A

Given: An arbitrary matrix A ∈ Cn×n.
Wanted: Jordan normal form J and X in Cn×n with A = XJX−1.

Algorithm

• Calculate all eigenvalues λ1, . . . ,λr (pairwise distinct) of A
and the algebraic multiplicities α1, . . . ,αr.

• For i = 1, . . . , r:

• Set N := A− λi1.

• Calculate Ker(N),Ker(N 2), . . . ,Ker(Nm) to dim(·) = αi.

• Calculate all dk := dim(Ker(Nk))− dim(Ker(Nk−1)).

• Draw the levels 1, . . . ,m and Jordan chains. (Box 9.3)

• Write down the Jordan block Ji. (Box 9.4)

• Calculate all generalised eigenvectors. (Box 9.5)

• Define Xi with all generalised eigenvectors. (Box 9.6)

• Set J := Diag(J1, . . . , Jr) and X :=
�
X1, . . . , Xr

�
as in (9.2).

Why does this work? Let us look at the X-columns regarding one Jordan chain and its
corresponding Jordan box. Choose the first chain from our example.



9.1 Jordan normal form 39

The chain was given by x1,2 = Nx1,3 and x1,1 = Nx1,2. In this way, we get.

x1,2 = Nx1,3 = (A− λi1)x1,3 = Ax1,3 − λix1,3, hence Ax1,3 = x1,2 + λix1,3

and x1,1 = Nx1,2 = (A− λi1)x1,2 = Ax1,2 − λix1,2, hence Ax1,2 = x1,1 + λix1,2.

In summary:

A

�
x1,1 x1,2 x1,3

�
=

�
Ax1,1 Ax1,2 Ax1,3

�
=

�
λix1,1 x1,1 + λix1,2 x1,2 + λix1,3

�

=

�
x1,1 x1,2 x1,3

�

λi 1

λi 1
λi


 =:

�
x1,1 x1,2 x1,3

�
Ji,1.

By using the definition of the Jordan chain, we get the 1s above the diagonal in the matrix
Ji,1. Only at the ordinary eigenvectors (here: x1,1), the chain stops. There, you do not
find a 1 but only λi since Ax1,1 = λix1,1.

By putting all Jordan boxes together into a Jordan block, we get γi equations (one per
Jordan box), given by

A (xj,1 xj,2 · · ·xj,k) = (xj,1 xj,2 · · ·xj,k) Ji,j, j = 1, . . . , γi ,

one matrix equation AXi = XiJi for the ith Jordan block.

The final assembling, cf. (9.2), of the Jordan blocks Ji to the whole matrix J gives us
then AX = XJ , which is exactly the factorisation A = XJX−1.

Now let us practise:
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Example 9.7. Let

A =




5 0 1 0 0
0 1 0 0 0
−1 0 3 0 0
0 0 0 1 0
0 0 0 0 4




.

• The characteristic polynomial is

det(A− λ1) = (4− λ)3(1− λ)2 .

We see that λ1 = 4 with α1 = 3 and λ2 = 1 with α2 = 2.

• Let us start the work (and fun) with the eigenvalue λ1 = 4. For the matrix

N := A− λ11 = A− 41 =




1 0 1 0 0
0 −3 0 0 0
−1 0 −1 0 0
0 0 0 −3 0
0 0 0 0 0




we get (after solving the LES Nx = o) that

Ker(N) = {x = (−x3, 0, x3, 0, x5)
� : x3, x5 ∈ C}

and hence γ1 = dim(Ker(N)) = 2. Since α1 = 3, we have to calculate

N2 =




0 0 0 0 0
0 9 0 0 0
0 0 0 0 0
0 0 0 9 0
0 0 0 0 0




and we get:

Ker(N 2) = {x = (x1, 0, x3, 0, x5)
� : x1, x3, x5 ∈ C} .

From this, we conclude dim(Ker(N 2)) = 3. Now we have reached the algebraic
multiplicity α1 = 3 and do not need to consider any higher powers of N , hence m = 2.

• For the differences of the dimension, we get

d1 := dim(Ker(N 1))− dim(Ker(N0)) = 2− 0 = 2,

d2 := dim(Ker(N 2))− dim(Ker(N1)) = 3− 2 = 1.

Note that Ker(N 0) = Ker(1) = {o} always have dimension 0.
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• We have m = 2 levels whereas the second level owns d2 = 1 vectors and the first level
has d1 = 2 vectors:

2nd level: x1,2

↓
1st level: x1,1 x2,1

• Since we have a Jordan chain with length 2 and another one with length 1, we know
that the first Jordan block J1 has two Jordan blocks with different sizes:

J1 =




4 1
0 4

4


 .

•

• We have finished the second chain and can give the matrix

X1 =
�
x1,1 x1,2 x2,1

�
=




1 1 0
0 0 0
−1 0 0
0 0 0
0 0 1




.

Now, we have done everything for the eigenvalue λ1 = 4. Next thing is the eigenvalue
λ2 = 1.

• For the matrix

N := A− λ21 = A− 11 =




4 0 1 0 0
0 0 0 0 0
−1 0 2 0 0
0 0 0 0 0
0 0 0 0 3




we get (after solving Nx = o) that

Ker(N) = {x = (0, x2, 0, x4, 0)
� : x2, x4 ∈ C}

and hence γ2 = dim(Ker(N)) = 2. Since α2 = 2, we do not need to calculate higher
powers of N and set m = 1.
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• We denote

d1 = dim(Ker(N 1))− dim(Ker(N0)) = 2− 0 = 2 ...

• ...and get a bit boring picture with only m = 1 level and d1 = 2 vectors:

1st level: x1,1 x2,1

Here, we see two chains with length 1.

• The Jordan block J2 has two Jordan boxes of size 1 and looks like:

J2 =

�
1

1

�
.

• Let us determine the generalised eigenvectors: x1,1 comes from Ker(N 1)\Ker(N0) and
we could choose x1,1 = (0, 1, 0, 0, 0)�. Now, for the second chain, choose x2,1 ∈ Ker(N1)
such that is not given by a linear combination of vectors from Ker(N 0) ∪ {x1,1} =
{o,x1,1}, cf. (9.1). Let us set x2,1 = (0, 0, 0, 1, 0)�.

• Hence, we have the matrix

X2 =
�
x1,1 x2,1

�
=




0 0
1 0
0 0
0 1
0 0




and also finished the work for the eigenvalue λ2.

• In summary, we get:

J =

�
J1

J2

�
=




4 1
0 4

4
1

1




and X =
�
X1 X2

�
=




1 1 0 0 0
0 0 0 1 0
−1 0 0 0 0
0 0 0 0 1
0 0 1 0 0




,

hence, A = XJX−1.

Corollary 9.8. Eigenvalues give determinant and trace

For A ∈ Cn×n, let λ1, . . . ,λn be the eigenvalues counted with algebraic multiplicities.
Then

det(A) =
n�

i=1

λi and tr(A) =
n�

i=1

λi ,

where tr(A) :=
�n

j=1 ajj is the sum of the diagonal, the so-called trace of A.


