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Remark:
A linear map � : V → W exactly conserves the structure of the vector spaces,
meaning vector addition and scalar multiplication. Therefore, mathematicians call
a linear map a homomorphism. A homomorphism � that is invertible and has an
inverse �−1 that is also a homomorphism is called an isomorphism. VL21

↓

8.3 Finding the matrix for a linear map

8.3.1 Just know what happens to a basis

Rule of thumb: Linearity makes it easy

For a linear map, you only have to know what happens to a basis. The remaining
part of space “tags along”.

Let � : V → W be a linear map and B = (b1, . . . ,bn) some basis of V . For each x ∈ V ,
we denote by ΦB(x) ∈ Fn its coordinate vector, which means

ΦB(x) =



α1...
αn


 ∈ Fn with x = α1b1 + · · ·+ αnbn = Φ−1

B



α1...
αn


 .

Then:

�(x) = �(α1b1 + · · ·+ αnbn) = α1�(b1) + · · ·+ αn�(bn)

Equation (8.7) says everything: If you know the images of the all basis elements, which
means �(b1), . . . , �(bn), then you know all images �(x) for each x ∈ V immediately.

Example 8.13. Let V = P3(R) with the monomial basis B = (m0,m1,m2,m3) where
mk(x) = xk. For the differential operator ∂ ∈ L(P3(R),P2(R)) where ∂ : f �→ f �, we have

∂(m0) = o, ∂(m1) = m0, ∂(m2) = 2m1, ∂(m3) = 3m2, (8.7)

For an arbitrary p ∈ P3(R), which means p(x) = ax3 + bx2 + cx + d for a, b, c, d ∈ R or
p = dm0 + cm1 + bm2 + am3, we have

pB =




d
c
b
a


 and hence ∂(p) = d∂(m0)+c∂(m1)+b∂(m2)+a∂(m3) = cm0+2bm1+3am2.

Checking this: p�(x) = 3ax2 + 2bx+ c, hence ∂(p) = p� = 3am2 + 2bm1 + cm0.
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8.3.2 Matrix of a linear map with respect to bases

Let us consider again two arbitrary finite-dimensional F-vector spaces V and W and linear
maps between them.

vector space V

with basis B
vector space W

with basis C

vector space Fn vector space Fm

x �(x)

ΦB(x) ΦC(�(x))

�

ΦB Φ−1
B ΦC Φ−1

C

matrix

Question:

How to get the map or the matrix in the bottom. How to send the coordinate vector
ΦB(x) to the coordinate vector ΦC(�(x))?

Of course, this is given by composing the three maps:

ΦC(�(x)) = (ΦC ◦ � ◦ Φ−1
B )(ΦB(x))

(ΦC ◦ � ◦ Φ−1
B )(ej) = ΦC(�(Φ

−1
B (ej))) = ΦC(�(bj))

This gives us a matrix that really represents the abstract linear map. It depends, of course,
on the chosen bases B and C in the vector spaces V and W , respectively. Therefore, we
choose a good name:

Matrix representation of the linear map

For the linear map � : V → W , we define the matrix

�C←B :=


ΦC(�(b1)) · · · ΦC(�(bn))


 ∈ Fm×n (8.8)

and call it the matrix representation of the linear map � with respect to the basis B
and C.
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This gets us to:

How to map the coordinates

ΦC(�(x)) = �C←BΦB(x). (8.9)

This completes our picture:

The matrix �C←B describes how � acts:

vector space V with basis B vector space W with basis C

vector space Fn vector space Fm

x �(x)

ΦB(x) ΦC(�(x))

�

ΦB Φ−1
B ΦC Φ−1

C

�C←B

Example 8.14. (a) Let ∂ : P3(R) → P2(R) with f �→ f � the differential operator We use
in P3(R) and P2(R) the respective monomial basis:

B = (m3,m2,m1,m0) and C = (m2,m1,m0).

We already know:

ΦC(∂(m3)) = ΦC(3m2) =

� �
, ΦC(∂(m2)) = ΦC(2m1) =

� �
,

ΦC(∂(m1)) = ΦC(m0) =

� �
, ΦC(∂(m0)) = ΦC(o) =

� �
.

The column vectors from above give us the columns of the matrix ∂C←B:

∂C←B =
�
ΦC(∂(m3)) ΦC(∂(m2)) ΦC(∂(m1)) ΦC(∂(m0))

�
=



3 0 0 0
0 2 0 0
0 0 1 0


 . (8.10)

Now we can use the map ∂ just on the coordinate level: For f ∈ P3(R) given by
f(x) = ax3 + bx2 + cx+ d with a, b, c, d ∈ R, we have
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ΦB(f) =




a
b
c
d


 hence ΦB(∂(f)) = ∂C←B ΦB(f) =



3 0 0 0
0 2 0 0
0 0 1 0







a
b
c
d


 =



3a
2b
c


 .

So we get:

∂(f) = Φ−1
C

�
3a
2b
c

�
= 3am2 + 2bm1 + cm0.

We check this again by ∂(f) = f � and f �(x) = 3ax2 + 2bx + c for all x. Therefore,
∂(f) = 3am2 + 2bm1 + cm0. Great!

(b) Looking again at the map
�
: P2([0, 1]) → P3([0, 1]) which sends f to its antiderivative

F given by

F(x) =

� x

0

f(t) dt for all x ∈ [0, 1].

Take again the monomial basis B = (m2,m1,m0) for P2([0, 1]) and C = (m3,m2,m1,m0)
for P3([0, 1]). For getting the matrix

�
C←B, we need the images of B. Because of

�
(mk)(x) =

� x

0

tk dt =
tk+1

k + 1

���
x

0
=

xk+1

k + 1
=

1

k + 1
mk+1(x) for k = 2, 1, 0 ,

we get

ΦC(
�
(m2)) = ΦC(

1
3
m3) =





 ,

ΦC(
�
(m1)) = ΦC(

1
2
m2) =





 ,

ΦC(
�
(m0)) = ΦC(

1
1
m1) =





 .

The matrix representation
�
C←B is now given by the coordinate vectors with respect

to the basis C:

�
C←B =


ΦC(

�
(m2)) ΦC(

�
(m1)) ΦC(

�
(m0))


 =




1/3 0 0
0 1/2 0
0 0 1
0 0 0


 . (8.11)
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(c) Let F ∈ {R,C} and m,n ∈ N. Choose

A =

�
a1 . . . an

�
∈ Fm×n

and the associated linear map fA : Fn → Fm with fA : x �→ Ax. For a basis in
V = Fn, we choose B = (e1, . . . , en) and in W = Fm canonical basis C = (ê1, . . . , êm),
where we choose the hats just to distinguish this basis from B. For getting the matrix
representation (fA)C←B we look what fA does with the basis B:

fA(e1) = Ae1 = a1
(∗)
= Φ−1

C a1, . . . , fA(en) = Aen = an
(∗)
= Φ−1

C an.

For the matrix representation (fA)C←B, we write the images into the columns and get:

(fA)C←B =

�
a1 . . . an

�
= A.

(d) Let d : R2 → R2 be the rotation by angle ϕ. Choose in V = W = R2 the canonical
basis B = (e1, e2). We use the rotation d for the basis elements e1 =

�
1
0

�
and e2 =

�
0
1

�
:

d(e1) = d(

�
1

0

�
) =

�
cosϕ

sinϕ

�
= Φ−1

B

�
cosϕ

sinϕ

�
,

d(e2) = d(

�
0

1

�
) =

�− sinϕ

cosϕ

�
= Φ−1

B

�− sinϕ

cosϕ

�
.

The matrix representation of d with respect to the standard basis is a so-called rotation
matrix

“Rotation matrix” = matrix representation of rotation with ϕ

dB←B =

�
cosϕ − sinϕ
sinϕ cosϕ

�
. (8.12)

(e) Let n ∈ R3 with �n� = 1 and projG : R3 → R3 the
linear map given by the orthogonal projection onto G :=
Span(n). We choose a basis B = (b1,b2,b3), in both
basis R3, which fits our problem: Let b1 := n and b2

and b3 orthogonal to n. Then:

projG : x = αb1����
x

G

+ βb2 + γb3� �� �
x

E

�→ αb1����
x

G

or in the coordinate language:

(projG)B←B : ΦB(x) =

�
α
β
γ

�
�→ ΦB(xG) =

�
α
0
0

�
. G

E

·

·
b1 = n

b2

b3

x|E

x|G

x

There, we can immediately see the matrix representation (projG)B←B:

(projG)B←B = (8.13)
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Alternatively, you would calculate the images:

ΦB(projG(b1)) = ΦB(b1) =

� �
,

ΦB(projG(b2)) = ΦB(o) =

� �
,

ΦB(projG(b3)) = ΦB(o) =

� �
.

8.3.3 Matrix representation for compositions

Proposition 8.15. Operations for matrix represenations

(a) Let V and W be two F-vector spaces with bases B and C, respectively. For linear
maps k, � ∈ L(V,W ) and α ∈ F, we have

(k + �)C←B = kC←B + �C←B and (α �)C←B = α �C←B.

(b) Let U be a third F-vector space with chosen basis A. For all � ∈ L(U, V ) and
k ∈ L(V,W ), we have

(k ◦ �)C←A = kC←B �B←A.

The zero matrix 0 and the identity matrix 1 are exactly the matrix representations of
the zero map o : V → W with x �→ o and of the identity map id : V → V with x �→ x,
respectively.

oC←B = 0 and idB←B = 1.

Now choose � again as a linear map V → W and also a basis B in V and a basis C in W .
If � is invertible, we immediately get:

(�−1)B←C �C←B = (�−1 ◦ �)B←B = idB←B = 1 and �C←B (�−1)B←C = 1.

Hence:
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Matrix representation of inverse = inverse matrix

(�−1)B←C = (�C←B)
−1. (8.14)

From this, we can conclude a very important result:

Corollary 8.16. Bijectivity not possible, if dim(V ) �= dim(W )

If dim(V ) �= dim(W ), then all linear maps � : V → W are not invertible.

Proof. If � is invertible, then (8.14) says the m×n-matrix �C←B is invertible. This means
that the matrix is a square one, hence dim(V ) = n = m = dim(W ).

Example 8.17. (a) Let projG ∈ L(R3,R3) be the linear operator given by the orthogonal
projection onto G := Span(n). We choose the same basis B in both R3 like in
Example 8.14 (f). For the projection projE and the reflection reflE with respect to
the plane E := {n}⊥, Proposition 8.15 gives us:

(projE)B←B
(8.2)
= (id− projG)B←B

= idB←B − (projG)B←B
(8.13)
=



1 0 0
0 1 0
0 0 1


−



1 0 0
0 0 0
0 0 0


 =



0 0 0
0 1 0
0 0 1




(reflE)B←B
(8.2)
= (id− 2 projG)B←B

= idB←B − 2 (projG)B←B
(8.13)
=



1 0 0
0 1 0
0 0 1


− 2



1 0 0
0 0 0
0 0 0


 =



−1 0 0
0 1 0
0 0 1




(b) Next, we again consider the differential operator ∂ : P3(R) → P2(R) and the anti-
derivative operator

�
: P2(R) → P3(R). In P2(R) and P3(R) choose the monomial

basis B and C, respectively. From Proposition 8.15 and the equations (8.10) and
(8.11), we conclude

(∂ ◦
�
)B←B = ∂B←C

�
C←B =



3 0 0 0
0 2 0 0
0 0 1 0







1/3 0 0
0 1/2 0
0 0 1
0 0 0


 =



1 0 0
0 1 0
0 0 1


 = idB←B

and

(
�
◦ ∂)C←C =

�
C←B ∂B←C =




1/3 0 0
0 1/2 0
0 0 1
0 0 0






3 0 0 0
0 2 0 0
0 0 1 0


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 �= idC←C.



16 8 General linear maps

8.3.4 Change of basis

Let B = (b1, . . . ,bn) and C = (c1, . . . , cn) be two bases of V . Then, the identity map
id : x �→ x of V with respect to B and C has the following matrix representation:

idC←B =


ΦC(id(b1)) · · · ΦC(id(bn))


 =

�
bC
1 · · · bC

n

�
= TC←B. (8.15)

Question:

What is the relation between �C←B and �C�←B�?

Let us try to calculate the matrices �C�←B� with the help of �C←B:

Change of basis left and right

�C�←B� = (id ◦ � ◦ id)C�←B� = idC�←C �C←B idB←B� = TC�←C �C←B TB←B� (8.16)

This gives us a nice picture:

Diagram: Change of basis left and right

coordinates w.r.t. basis B coordinates w.r.t. basis C

coordinates w.r.t. basis B� coordinates w.r.t. basis C�

xB

xB�

�(x)C

�(x)C
�

x �(x)

�C←B ·
matrix representation

T
B�

←
B

T
B←

B
� T

C←
C�

T
C
�←

C

�C�←B� ·
matrix representation

�
our linear map

Φ −1B

ΦB

Φ −1C �

Φ
C �ΦB�

Φ
−1
B�

ΦC

Φ
−1
C

Fn

Fn

Fm

Fm

vector space V vector space W
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Example 8.18. Let us consider the differential operator ∂ : P3(R) → P2(R) where
V = P3(R) carries the monomial basis B = (m3,m2,m1,m0) and an additional basis

B� = (2m3 −m1, m2 +m0, m1 +m0, m1 −m0) =: (b�
1, b�

2, b�
3, b�

4) .

Moreover, W = P2(R) carries the monomial basis C = (m2,m1,m0) and another basis

C � = (m2 − 1
2
m1, m2 +

1
2
m1, m0) =: (c�1, c�2, c�3).

ΦB(b
�
1) = ΦB(2m3 −m1) =




2
0
−1
0


 , ΦB(b

�
2) = ΦB(m2 +m0) =




0
1
0
1


 ,

ΦB(b
�
3) = ΦB(m1 +m0) =




0
0
1
1


 , ΦB(b

�
2) = ΦB(m1 −m0) =




0
0
1
−1


 .

In summary, we have:

TC�←C =




1/2 −1 0
1/2 1 0
0 0 1


 , ∂C←B =



3 0 0 0
0 2 0 0
0 0 1 0


 , TB←B� =




2 0 0 0
0 1 0 0
−1 0 1 1
0 1 1 −1


 .

Using (8.16), we know that the matrix representation ∂C�←B� is given by the product of
these three matrices:

∂C�←B� = TC�←C ∂C←B TB←B� =




3 −2 0 0
3 2 0 0
−1 0 1 1


 . (8.17)

Alternatively, we could directly calculate ∂C�←B� from ∂ and the bases B� and C �. In order
to do this, we apply ∂ to the basis elements from B� and represent the results with respect
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to the basis C �:

ΦC�(∂(b�
1)) = ΦC�

�
∂(2m3 −m1� �� �

b�
1

)
�
= ΦC�(6m2 −m0) =

�
3
3
−1

�
,

ΦC�(∂(b�
2)) = ΦC�

�
∂(m2 +m0� �� �

b�
2

)
�
= ΦC�(2m1) =

�−2
2
0

�
,

ΦC�(∂(b�
3)) = ΦC�

�
∂(m1 +m0� �� �

b�
3

)
�
= ΦC�(m0) =

�
0
0
1

�
,

ΦC�(∂(b�
4)) = ΦC�

�
∂(m1 −m0� �� �

b�
4

)
�
= ΦC�(m0) =

�
0
0
1

�
.

This gives us, as expected, the same matrix as in (8.17).
However, we can also do another alternative computation. Choose a, b, c, d ∈ R arbitrar-
ily. Then:

fB
�
=



a
b
c
d




Φ−1
B��−→ f = a(2m3 −m1) + b(m2 +m0) + c(m1 +m0) + d(m1 −m0)

= 2am3 + bm2 + (−a+ c+ d)m1 + (b+ c− d)m0

∂�−→ ∂(f) = 6am2 + 2bm1 + (−a+ c+ d)m0

= 6a (1
2
c�1 +

1
2
c�2)� �� �

m2

+2b (−c�1 + c�2)� �� �
m1

+(−a+ c+ d) c�3����
m0

= (3a− 2b)c�1 + (3a+ 2b)c�2 + (−a+ c+ d)c�3

ΦC��−→ ∂(f)C
�
=




3a− 2b
3a+ 2b

−a+ c+ d


 �

=




3 −2 0 0
3 2 0 0
−1 0 1 1






a
b
c
d


 .

8.3.5 Equivalent and similar matrices

Both matrices

∂C←B =



3 0 0 0
0 2 0 0
0 0 1 0


 and ∂C�←B� =




3 −2 0 0
3 2 0 0
−1 0 1 1




from Example 8.18 look completely different although they describe the same linear map
∂ ∈ L(P3(R),P2(R)), however, with respect two different bases.
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Question:

Are there bases B� and C � in V and W , respectively, such that A� is the matrix
representation of �,

A� = �C�←B� ?

coordinate vector w.r.t.
basis B in V

coordinate vector w.r.t.
basis C in W

coordinate vector w.r.t.
basis B� in V

coordinate vector w.r.t.
basis C� in W

equivalence

A� = SAT

xB

xB�

�(x)C

�(x)C
�

T TB←B�

�C←B = A

TC�←C S

�C�←B�
?
= A�

with nice structure

Fn

Fn

Fm

Fm

We already know, cf. (8.16),

�C�←B� = TC�←C� �� �
=:S

�C←B����
A

TB←B�� �� �
=:T

= SAT.

Choosing all possible bases B� and C � in V and W , respectively, we get all possible invert-
ible matrices S and T and hence with �C�←B� all matrices that are equivalent to A:

Proposition & Definition 8.19. Equivalent matrices

A matrix B ∈ Fm×n is called equivalent to another matrix A ∈ Fm×n if there are
invertible matrices S ∈ Fm×m and T ∈ Fn×n with

B = SAT.

In this case, we write B ∼ A. For arbitrary matrices A,B,C ∈ Fm×n, the following
holds:

A ∼ A, A ∼ B ⇒ B ∼ A, A ∼ B ∧ B ∼ C ⇒ A ∼ C.

Equivalent matrices describe the same linear map, just with respect to different bases.


