8.3 Finding the matrix for a linear map 9

| Remark: !

A linear map £ : V. — W exactly conserves the structure of the wvector spaces,
meaning vector addition and scalar multiplication. Therefore, mathematicians call
a linear map a homomorphism. A homomorphism ¢ that is invertible and has an

inverse {=1 that is also a homomorphism is called an isomorphism. VL21
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8.3 Finding the matrix for a linear map o R

8.3.1 Just know what happens to a basis N i Y\g_\
Vs ”

Rule of thumb: Linearity makes it easy

For a linear map, you only have to know what happens to a basis. The remaining
part of space “tags along”.

Let ¢ : V. — W be a linear map and B = (by,...,b,) some basis of V. For each x € V,
we denote by ®5(x) € F" its coordinate vector, which means

) aq aq
X =Pp(x)=| : | €eF* with ®=ab;+ - +aub, = (IDgl
(67% 7%

Then: / u” lM'/'M-‘al bl

’ -
(x) = llanby + - - - + apby) = al(by) + - - - 4+ al(by,)

EE—

Equation (8.7) says everything: If you know the images of the all basis elements, which
means {(by),...,¢(b,), then you know all images ¢(x) for each x € V' immediately.

Example 8.13. Let V' = P3(R) with the monomial basis B = (mg, m;, ms, m3) where
my,(z) = 2*. For the differential operator & € L(P3(R), P2(R)) where 0 : f — f’, we have

8(1110) = 0, 8@1) = INy, (9(m2) = 211’11, 8(m3) = 311’12, (87)
VE ) ‘
N Wy Xk’

o A \

For an arbitrary p € P3(R), which means p(z) = az® + bx® + cx + d for a,b,c,d € R or
p = dmg + cm; + bmy + ams, we have

d
p° = and hence 9(p) = dd(myg)+cd(m;)+b3d(mz)+ad(mz) = cmg+2bm; +3ams,.

C
g i>

SO

=}

3
Checking this: p’(z) = 3ax? + 2bz + ¢, hence d(p) = p’ = 3amy + 2bm; + cmy. ;
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8.3.2 Matrix of a linear map with respect to bases

Let us consider again two arbitrary finite-dimensional F-vector spaces V' and W and linear

maps between them.

P ( N
x./‘g\;.é(x) 5;@ O/a %
[ [ 1 3 %

hWea —
-1 1 b

Oy )% ® o 3,4 Fre F*

U ] r

)

|
Dp(x De(€(x)) Az D - {fe
) = 3l

vector space F\ § /Z(?tor space F™ -
~-
J:/.\(X) = Ax

matrix

\

Question:

How to get the map or the matrix in the bottom. How to send the coordinate vector
®p(x) to the coordinate vector @e(l(x))?

Of course, this is given by composing the three maps:

De(l(x)) = (®c oo P5')(Ps(x))
b.

v

4

o alan of A y(g)<@c 0 l0 05 e)) = Be(t(@y(e) =Be(llby)
This gives us a matrix that really represents the abstract linear map. It depends, of course,
on the chosen bases B and C in the vector spaces V and W, respectively. Therefore, we

choose a good name:

| Matrix representation of the linear map

For the linear map ¢ :' V' — W, we define the matrix

I
boup = [ Pc(l(by)) ... Pe(€(by)) | € F™x» (8.8)

and call it the matrix representation of the linear map ¢ with respect to the basis B

and C. N
VA ef of A ts oo Hr teabix
(YO"‘ heed b k-«v H< ()@tr)
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This gets us to: _Ll )LJ: [(X € _ ﬂ
/ 52 <3 )-(—

How to map the coordinates

Pe(€(x)) = LlesPs(x). (8-9)_‘

| The matrix /-, 5 describes how ¢ acts:

This completes our picture:

vector space V' with basis B vector space W with basis C
l
A [

@B(x).\ oo | 2elt)

vector space F" vector space F™

0

Example 8.14. (a) Let(@ : P3(R) — P2(R) with'f — £’ the differential operator We use
in P3(R) and Py(R) the respective monomial basis:

B = (mg,mz,ml,mo) and C = (mz,ml,mg).

We already know: é‘f \/
3\m,

o
$c(0(my)) = Pe(3my) = ;)m Be(0(my)) = Pe(2my) = (; ,
ot ° o\e R
®c(0(my)) = Pc(my) = (:) ) Pe(d(my)) = Pc(0) = (g)

The column vectors from above give us the columns of the matrix d¢. g:

l ' { l

Now we can use the map O just on the coordinate level: For f € P;3(R) given by
f(z) = ax® + bx® + cx + d with a,b, c,d € R, we have

l

5‘(ﬂ =Jax" «lhx 4

| ( | ( 3000
Do = \ Pe(0(m3)) ®c(0(my)) Oe(O(my)) <I>c(8(mo)5= 0 0 o). (8.10)
10




? .
12 ft77 ( R) — /ﬂ_ (R) 8 General linear maps

) 3000\ () 3a
(I)B(f): @ hence (I)B(a(f)):acggq)g(f): 0 2 0 0 @ = 2b

d 0 010 d c
So we get:

3a
of) = o;! <2b> = 3am; + 2bm; + cmy.
¢

We check this again by 9(f) = ' and f’(z) = 3ax? + 2bx + ¢ for all . Therefore,
J(f) = 3amy + 2bm; 4+ cmy. Great!

(b) Looking again at the map [ :P([0, 1]) — P5([0, 1]) which sends f to its antiderivative

F given by . L> H
F(z) = / f(t)dt for all z €0, 1]. b a i
0

Take again the monomial basis B = (my, m;, my) for Py ([0, 1]) and C = (m3, my, m;, my)
for P5([0, 1]). For getting the matrix [, ,, we need the images of B. Because of
P ilj‘k+1 1

0 k+1 k_l_lmk—i-l(x) or ) 707

fm)) = [ "t =

we get

De(f(my)) = Pe(fms) = :

De(f(my)) = Pe(fmy) = :

Ce(f(mo)) = Ce(fmy) =

The matrix representation fc . 18 now given by the coordinate vectors with respect
to the basis C:

(8.11)

o .
Joes = ¢C(f|(m2)) q’c(fl(ml)) q’c(le(mo)) = 8 /2
0

O = O O
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= —> Vs
(c) Let F € {R,C} and m,n € N. Choose
L Gﬁ)" oy
A= a, Frmxn " (L Q]
( | ) c F >

ai ... [I:h

and the associated linear map f4 : F* — F™ with f4 : x — Ax. For a basis in

V = F", we choose B = (ey,...,e,) and in W = F™ canonical basis C = (&1, ...,&,,),
where we choose the hats just to distinguish this basis from B. For getting the matrix
o4 representation (fa)c.p we look what f4 does with the basis B:

v ”64 E‘B =od
Q:TC(_-S‘/KL,‘)) = fA(e1>:Aelzal(;)cI)EIal, cee fA(en):Aen:an(*:)‘I)Elan Ie =cd

—
For the matrix representation (f4)c. 5, we write the images into the columns and get:
I I 4,‘[\')‘ r< R.I\‘/J“
(fA)C(—B = (a1 ... & = (A. o. PJ- I’:}_ J C}JA
[ | andc 6“5{.\
S /4

(d) Let d : R? — R? be the rotation by angle ¢. Choose in V' = W = R® the canomcal
basis B = (el, €3). We use the rotation d for the basis elements e = (0) andey; = (O):

VA d(eg:d(@):(;?;_;>:@51<;f;;>,
LT g ae (i) - (10) e ()

Cu‘ l ,
The matrix representation of d with respect to the standard basis is a so-called rotation
matrix
“Rotation matrix” = matrix representation of rotation with ¢

. (cosy = sin ¢
dsen (singp cos ¢ ) ' @12

(e) Let n € R® with ||n|]| = 1 and proj. : R® — R? the
linear map given by the orthogonal projection onto G :=
Span(n). We choose a basis B = (by, bs, bs), in both
basis R?, which fits our problem: Let b; := n and b,
and bs orthogonal to n. Then:

projo : (X = ab; + by +9bs — ab;
—_—

~— ~—~
= X x X
la Fo la
r\ (\ e—————

or in the coordinate language: 1

o ¢ T o
(projg)es: Pn(x) = (5) = (I)B(X\G) = (E)) .

,y g CLIvﬁ SC LY 'JOOJ
There, we can immediately see the matrix representation W baxs D oun
nbl .
. A 6 o °( w f
(proje)sen = 8 (8.13)
(b (e} fo) = 0
6 o 0 J 0
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Alternatively, you would calculate the images:

Ld
®s(projg(b1)) = ®p(by) = (6')%
—— - 0 6

®5(projg(bz)) = ®5(0) = (:‘" ,

Ps(projg(bs)) = 5(0) = (

8.3.3 Matrix representation for compositions

(_iucv haff.— + <., o

/

| Proposition 8.15. Operations for matrix represenations

(a) LetV and W be two F-vector spaces with bases B and C, respectively. For linear
maps k, 0 € L(V,W) and a € F, we have
(k+0cen = kcen + leen and (@l = aleep.
(b) Let U be a third F-vector space with chosen basis A. For a@_&and
ke L(V,W), we have é V > W,
(kol)ceu = keep lpea. F* 5”;"“:& k‘;fF

The zero matrix 0 and the identity matrix 1 are exactly the matrix representations of
the zero map o: V — W with x — o and of the identity map id : V — V with x — x,
respectively.

OcepB = 0 and id3<_lg = 1ll.
{ I

Now choose ¢ again as a linear map V' — W and also a basis B in V' and a basis C in V.
If ¢ is invertible, we immediately get:

(0 Ngece besas = (' 0 )pep =lidpep = L, and  fleen (0 )Bec = L,

Hence: AN
f ﬁ/y Vo (O A

A3 = /ﬁv‘ (Ho.ﬂw,-k £.3 3-A- ﬂh
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Matrix representation of inverse — inverse matrix

(" Hpee = (been) ™" (8.14)

From this, we can conclude a very important result:

Corollary 8.16. Bijectivity not possible, if dim (V') # dim(W)
|_ If dim(V') # dim(W), then all linear maps € :V — W are not invertible.

—

Tor din (8 () you cmn bl e Gijedine ape! (b e Lo s

Proof. 1f ¢ is invertible, then (8.14) says the m X n-matrix {¢c. g is invertible. This means

that the matrix is a square one, hence dim(V) =n = m = dim(W). O
/l oo
() - 6 00
( Joé ) =
f b3 6 00

Example 8.17. (a) Let proj, € £(R3,R?) be the linear operator given by the orthogonal
projection onto G := Span(n). We choose the same basis B in both R? like in
Example 8.14 (f). For the projection proj, and the reflection refly with respect to
the plane E := {n}*, Proposition 8.15 gives us:

. (8.2) ,. .
(projp)pes = (id —Pprojg)pes

i (100 100 00 0
— ide s — (proje)ses =) (o 1 0] =00 0o)l={01 0
00 1 00 0 00 1) u
/(‘cﬂul‘. M
(reflg) %2 (td — 2 projg) "
§/55 B5b iy (100 100 ~100
—idpes — 2proje)ses = (01 0] —2lo 0 0)l=0 1 0
00 1 00 0 0 0

(b) Next, we again consider the differential operator d : P3(R) — P5(R) and the anti-
derivative operator [ : Po(R) — P3(R). In P2(R) and Ps(R) choose the monomial
basis B and C, respoctively. From Proposition 8.15 and the equations (8.10) and
(8.11), we conclude

1
3000 {)3 1(/)8 100
(00 [)ses =0pcc [o.g=(0 2 0 0 0 02 =101 0) =idses
0010 0 0 0 001
and
Ys 0 0 1000
0 Y% 0 3 000 0100 .
(fO a)(j(_c:fcks 8&_5: 0 0 1 02 00 = 001 0 #Zda_c.
0 0 o) \0O 1O 0000



16 8 General linear maps

8.3.4 Change of basis h:-V—>V ? (od (64)) _ LC
€ T o4

Let' B = (by,...,b,) and C = (¢1,...,¢,) be two bases of V. Then, the identity map
id : x — x of V" with respect to B and C has the following matrix representation:

> CLworc “‘j‘"} Lan'.f 0(;' )’oq., 0),-“(1,—-!

ki x wrt B d &

m———

Mbwa [: v’-7\n/ ~> /C

AN <%
= /c'e-

What is the relation between le.p and berpr ¢

g lchin \.;.r.”' ﬂ‘ od C’.'

Question:

Let us try to calculate the matrices f¢ 5 with the help of e 5:

Change of basis left and right

b = (idoloid)gnip = ‘iderc loep idpep = Toceen Tpep  (8.16)

This gives us a nice picture:

| Diagram: Change of basis left and right

boep -

coordinates w.r.t. basis C

g [T ()
O scL—1)

\‘f\]\\ / //oz/t/
t? \ . our ligeal} map . / ‘3
2 ¢ /)/XV ((x) \K\% 3]

N vector spa W
S NG
P uf// Y
XB/ \ 7 / 14 (X)C,
\C/%B, / coordinates w.r.t. basis C’

matrix representation

coordinates w.r.t. basis B

matrix representation

F?’TL

S5
T
o

coordinates w.r.t. basis B’
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Example 8.18. Let us consider the differential operator 0 : P3(R) — Po(R) where
V' = P3(R) carries the monomial basis B = (m3, my, m;, my) and an additional basis

B (2m3—m1, m2—|—m0, m1+m0, ml—mo) (b/l, b/27 bé, b/)

Moreover, W = P5(R) carries the monomial basis C = (ms, m;, mg) and another basis

2

C'=(my — %ml, msy + %ml, my) =: (¢}, ch, cj). CeBd

96 ¥

rRE 3
T > @

@B(bll) = CI)B(21’I13 — m1 = ) = @B(mg + mo) =

(bB(b/) (IJB(ml +m0)

1)
Eo

®p(b)) = Ps(m; — my) =
1

_= o O
N~ S = O = O

In summary, we have:

w

0
1/2 -1 0
Teree = | ' Tsem = | 4 1

)
S NN O
_ o O
oS O O

0
0 ) aCeB =
1

S

1
0

(@)
— O = O
— = O O

0 =1

Using (8.16), we know that the matrix representation dcr, s is given by the product of
these three matrices:

3 <2 00
8c/<_3/ = Toiee 864_3 Tep = 3 2 0 0]. (8.17)
-1 0 11

Alternatively, we could directly calculate O¢/. g from O and the bases B’ and C’. In order
to do this, we apply 0 to the basis elements from B’ and represent the results with respect

Cwn
oM o
Aﬁo

{

M)

Cee
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to the basis C’:

3
Do (A(B))) = D (a(2m3 - m1)> — B (6my — mp) = ( 3 > ,

by

-2
Do (A(bh)) = D <8(m2 b+ m0)> = §o(2m,) = ( - ) ,
) 0
(I)C/(a(b3)) = q)c/ <8(m1 :/— m0)> = @cl(l’ﬂo) = (?) s

0
<I>C/(8(b£1)) = q)c/ <8(m1 — mo)) = (I)C/(mo) = (0) .

by

This gives us, as expected, the same matrix as in (8.17).
However, we can also do another alternative computation. Choose a,b,c,d € R arbitrar-

ily. Then:

5 f = a(2ms — my) 4 b(my + myp) + c¢(my +mg) + d(m; — my)
= 2ams + bmy + (—a + ¢+ d)m; + (b+ ¢ — d)m

5 =

QO 2

—  O(f) = 6amy + 2bm; + (—a + ¢+ d)my
= 6a(ic) + 1¢h) +2b(—c) + cy) +(—a+c+d) cf
—~~

N ) N /
N v

mo mq mo
= (3a — 2b)c] + (3a + 2b)cy + (—a + ¢+ d)cj
o 3a — 2b 3 =2 00 g
o) = Ba+2 | =3 2 0 0[]
—a+c+d -1 0 11 d
8.3.5 Equivalent and similar matrices
Both matrices
3000 3 =2 00
8c<_3 = 0 200 and (‘30/(_3/ = 3 2 00
0010 -1 0 11
—

from Example 8.18 look completely different although they describe the same linear map
0 € L(P5(R), P2(R)), however, with respect two different bases.
om—

jh Jl-nl.m(: /E i(]/,l,\/) , /4:-_-_ [C@Be ﬂ:lo-xv-

//L’L W‘AI)‘ /4|€ Fw.xu
(thnyz. 7
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Question:

Are there bases B' and C' in V' and W, respectively, such that A’ is the matrix

representation of £,
A = loep ?

coordinate vector w.r.t. coordinate vector w.r.t.
basis B in V basis C in W
C
xB beep=A ((x)
) > e
N
F» Fm
equivalence ,
T Tsep A — SAT Terec |8
I ? I
- /
gC’(—B’ =A Y
° >0
! 3 H /
XB with nice structure E(X)C
coordinate vector w.r.t. coordinate vector w.r.t.
basis B’ in V basis C' in W

We already know, cf. (8.16),

loen = Tene le B = SAT.
\,5/ T 2
=: =T

Choosing all possible bases B’ and C’ in V' and W, respectively, we get all possible invert-
ible matrices S and T and hence with f¢ g all matrices that are equivalent to A:

Proposition & Definition 8.19. Equivalent matrices

A matriz B € F™*" is called equivalent to another matrix A € F™*" if there are
wnvertible matrices S € B and T € F"*" with

B = SAT.

In this case, we write B ~ A. For arbitrary matrices A, B, C' € F™*™ the following

holds: — Jan e ,m/.—l-'u |l for =

A~B = B~ A, A~B A B~C = A~C. as |;Le<=>
l:hloJ,"

A~ A

Y

Equivalent matrices describe the same linear map, just with respect to different bases.



