Remark:

A linear map $\ell : V \to W$ exactly conserves the structure of the vector spaces, meaning vector addition and scalar multiplication. Therefore, mathematicians call a linear map a homomorphism. A homomorphism ℓ that is invertible and has an inverse ℓ^{-1} that is also a homomorphism is called an isomorphism.

8.3 Finding the matrix for a linear map

8.3.1 Just know what happens to a basis

Rule of thumb: Linearity makes it easy

For a linear map, you only have to know what happens to a basis. The remaining part of space "tags along".

Let $\ell: V \to W$ be a linear map and $\mathcal{B} = (\mathbf{b}_1, \ldots, \mathbf{b}_n)$ some basis of V. For each $\mathbf{x} \in V$, we denote by $\Phi_{\mathcal{B}}(\mathbf{x}) \in \mathbb{F}^n$ its coordinate vector, which means

$$\mathbf{x}^{\mathbf{3}} = \Phi_{\mathcal{B}}(\mathbf{x}) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{F}^n \quad \text{with} \quad \mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n = \Phi_{\mathcal{B}}^{-1} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Then:
$$\ell(\mathbf{x}) = \ell(\alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n) = \alpha_1 \ell(\mathbf{b}_1) + \dots + \alpha_n \ell(\mathbf{b}_n)$$

Equation (8.7) says everything: If you know the images of the all basis elements, which means $\ell(\mathbf{b}_1), \ldots, \ell(\mathbf{b}_n)$, then you know all images $\ell(\mathbf{x})$ for each $\mathbf{x} \in V$ immediately.

Example 8.13. Let $V = \mathcal{P}_3(\mathbb{R})$ with the monomial basis $\mathcal{B} = (\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3)$ where $\mathbf{m}_k(x) = x^k$. For the differential operator $\partial \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ where $\partial : \mathbf{f} \mapsto \mathbf{f}'$, we have

$$\partial(\mathbf{m}_{0}) = \mathbf{o}, \quad \partial(\mathbf{m}_{1}) = \mathbf{m}_{0}, \quad \partial(\mathbf{m}_{2}) = 2\mathbf{m}_{1}, \quad \partial(\mathbf{m}_{3}) = 3\mathbf{m}_{2}, \quad (8.7)$$

$$\downarrow \mathbf{p}_{3} \quad \downarrow \quad \mathbf{p}_{3} \quad \mathbf{p}_{3} : \mathbf{X} \mapsto \mathbf{X}^{3}$$

$$\begin{pmatrix} \mathbf{o} \\ \mathbf{a} \\ \mathbf{a} \end{pmatrix} \quad \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{a} \end{pmatrix} \quad \mathbf{h}_{3}^{1} \quad \mathbf{X} \mapsto \mathbf{x}^{2}$$

For an arbitrary $\mathbf{p} \in \mathcal{P}_3(\mathbb{R})$, which means $\mathbf{p}(x) = ax^3 + bx^2 + cx + d$ for $a, b, c, d \in \mathbb{R}$ or $\mathbf{p} = d\mathbf{m}_0 + c\mathbf{m}_1 + b\mathbf{m}_2 + a\mathbf{m}_3$, we have

$$\mathbf{\xi}_{\mathfrak{g}}(\mathbf{p}) - \mathbf{p}^{\mathcal{B}} = \begin{pmatrix} d \\ c \\ b \\ a \end{pmatrix} \text{ and hence } \partial(\mathbf{p}) = d\partial(\mathbf{m}_0) + c\partial(\mathbf{m}_1) + b\partial(\mathbf{m}_2) + a\partial(\mathbf{m}_3) = c\mathbf{m}_0 + 2b\mathbf{m}_1 + 3a\mathbf{m}_2.$$

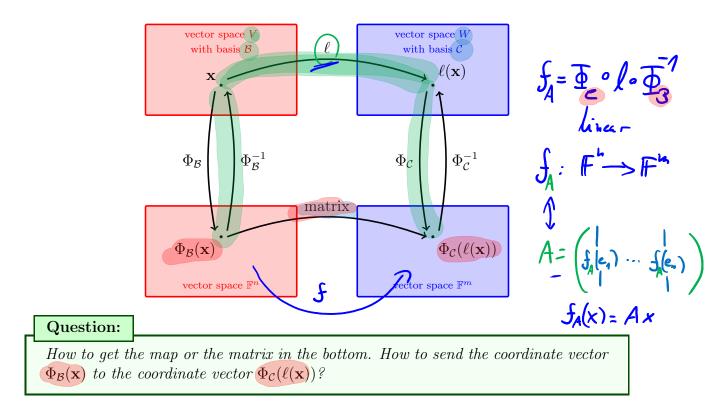
Checking this: $\mathbf{p}'(x) = 3ax^2 + 2bx + c$, hence $\partial(\mathbf{p}) = \mathbf{p}' = 3a\mathbf{m}_2 + 2b\mathbf{m}_1 + c\mathbf{m}_0$.

is R

VL21

8.3.2 Matrix of a linear map with respect to bases

Let us consider again two arbitrary finite-dimensional $\mathbb F\text{-vector spaces}\,V$ and W and linear maps between them.



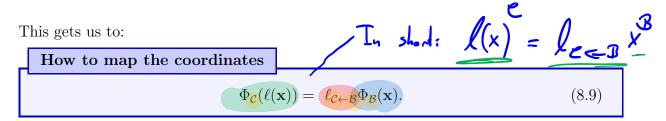
Of course, this is given by composing the three maps:

$$\Phi_{\mathcal{C}}(\ell(\mathbf{x})) = (\Phi_{\mathcal{C}} \circ \ell \circ \Phi_{\mathcal{B}}^{-1})(\Phi_{\mathcal{B}}(\mathbf{x}))$$

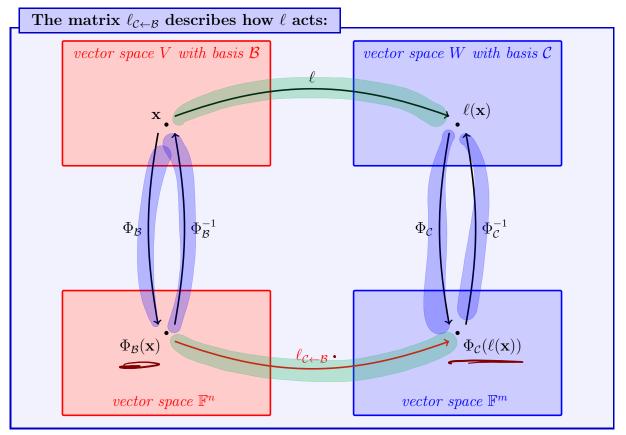
jth channel of
$$A = \int_{A} (\mathbf{e}_{j}) = (\Phi_{\mathcal{C}} \circ \ell \circ \Phi_{\mathcal{B}}^{-1})(\mathbf{e}_{j}) = \Phi_{\mathcal{C}}(\ell(\Phi_{\mathcal{B}}^{-1}(\mathbf{e}_{j}))) = \Phi_{\mathcal{C}}(\ell(\mathbf{b}_{j}))$$

This gives us a matrix that really represents the abstract linear map. It depends, of course, on the chosen bases \mathcal{B} and \mathcal{C} in the vector spaces V and W, respectively. Therefore, we choose a good name:

Matrix representation of the linear map
For the linear map
$$l: V \to W$$
, we define the matrix
 $\ell_{C \leftarrow B} := \left(\Phi_{C}(\ell(\mathbf{b}_{1})) \dots \Phi_{C}(\ell(\mathbf{b}_{n})) \right) \in \mathbb{F}^{m \times n}$ (8.8)
and call it the matrix representation of the linear map l with respect to the basis \mathcal{B}
and \mathcal{C} .
All the information of Λ is a this matrix
(You need to from the basis)



This completes our picture:



Example 8.14. (a) Let $\partial : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ with $\mathbf{f} \mapsto \mathbf{f}'$ the differential operator We use in $\mathcal{P}_3(\mathbb{R})$ and $\mathcal{P}_2(\mathbb{R})$ the respective monomial basis:

$$\mathcal{B} = (\mathbf{m}_{3}, \mathbf{m}_{2}, \mathbf{m}_{1}, \mathbf{m}_{0}) \text{ and } \mathcal{C} = (\mathbf{m}_{2}, \mathbf{m}_{1}, \mathbf{m}_{0}).$$

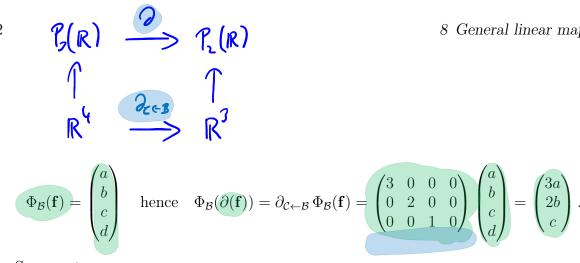
We already know:
$$\Phi_{\mathcal{C}}(\partial(\mathbf{m}_{3})) = \Phi_{\mathcal{C}}(3\mathbf{m}_{2}) = \begin{pmatrix} \mathbf{3} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}_{\mathbf{m}_{0}}^{\mathbf{m}_{1}} \qquad \Phi_{\mathcal{C}}(\partial(\mathbf{m}_{2})) = \Phi_{\mathcal{C}}(2\mathbf{m}_{1}) = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix},$$

$$\Phi_{\mathcal{C}}(\partial(\mathbf{m}_{1})) = \Phi_{\mathcal{C}}(\mathbf{m}_{0}) = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \qquad \Phi_{\mathcal{C}}(\partial(\mathbf{m}_{0})) = \Phi_{\mathcal{C}}(\mathbf{0}) = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}.$$

The column vectors from above give us the columns of the matrix $\partial_{\mathcal{C}\leftarrow\mathcal{B}}$:

$$\partial_{\mathcal{C} \leftarrow \mathcal{B}} = \left(\Phi_{\mathcal{C}}(\partial(\mathbf{m}_3)) \ \Phi_{\mathcal{C}}(\partial(\mathbf{m}_2)) \ \Phi_{\mathcal{C}}(\partial(\mathbf{m}_1)) \ \Phi_{\mathcal{C}}(\partial(\mathbf{m}_0)) \right) = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} . \quad (8.10)$$

Now we can use the map ∂ just on the coordinate level: For $\mathbf{f} \in \mathcal{P}_3(\mathbb{R})$ given by $\mathbf{f}(x) = ax^3 + bx^2 + cx + d$ with $a, b, c, d \in \mathbb{R}$, we have



So we get:

$$\partial(\mathbf{f}) = \Phi_{\mathcal{C}}^{-1} \begin{pmatrix} 3a \\ 2b \\ c \end{pmatrix} = 3a\mathbf{m}_2 + 2b\mathbf{m}_1 + c\mathbf{m}_0.$$

We check this again by $\partial(\mathbf{f}) = \mathbf{f}'$ and $\mathbf{f}'(x) = 3ax^2 + 2bx + c$ for all x. Therefore, $\partial(\mathbf{f}) = 3a\mathbf{m}_2 + 2b\mathbf{m}_1 + c\mathbf{m}_0$. Great!

(b) Looking again at the map $\int : \mathcal{P}_2([0,1]) \to \mathcal{P}_3([0,1])$ which sends **f** to its antiderivative **F** given by 1

$$\mathbf{F}(x) = \int_0^x \mathbf{f}(t) \, dt \qquad \text{for all} \quad x \in [0, 1].$$

Take again the monomial basis $\mathcal{B} = (\mathbf{m}_2, \mathbf{m}_1, \mathbf{m}_0)$ for $\mathcal{P}_2([0, 1])$ and $\mathcal{C} = (\mathbf{m}_3, \mathbf{m}_2, \mathbf{m}_1, \mathbf{m}_0)$ for $\mathcal{P}_3([0,1])$. For getting the matrix $\int_{\mathcal{C}\leftarrow\mathcal{B}}$, we need the images of \mathcal{B} . Because of

$$\int (\mathbf{m}_k)(x) = \int_0^x t^k dt = \frac{t^{k+1}}{k+1} \Big|_0^x = \frac{x^{k+1}}{k+1} = \frac{1}{k+1} \mathbf{m}_{k+1}(x) \quad \text{for} \quad k = 2, 1, 0,$$

we get

$$\begin{split} \Phi_{\mathcal{C}}(f(\mathbf{m}_2)) &= \Phi_{\mathcal{C}}(\frac{1}{3}\mathbf{m}_3) = \begin{pmatrix} & \\ & \end{pmatrix}, \\ \Phi_{\mathcal{C}}(f(\mathbf{m}_1)) &= \Phi_{\mathcal{C}}(\frac{1}{2}\mathbf{m}_2) = \begin{pmatrix} & \\ & \end{pmatrix}, \\ \Phi_{\mathcal{C}}(f(\mathbf{m}_0)) &= \Phi_{\mathcal{C}}(\frac{1}{1}\mathbf{m}_1) = \begin{pmatrix} & \\ & \end{pmatrix}. \end{split}$$

The matrix representation $\int_{\mathcal{C} \leftarrow \mathcal{B}}$ is now given by the coordinate vectors with respect to the basis \mathcal{C} :

$$\int_{\mathcal{C}\leftarrow\mathcal{B}} = \left(\Phi_{\mathcal{C}}(\int_{-1}^{1/3} (\mathbf{m}_{2})) \Phi_{\mathcal{C}}(\int_{-1}^{1/3} (\mathbf{m}_{1})) \Phi_{\mathcal{C}}(\int_{-1}^{1/3} (\mathbf{m}_{0})) \right) = \begin{pmatrix} \frac{1/3}{0} & 0 & 0 \\ 0 & \frac{1/2}{0} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
(8.11)

/1 /

12

(c) Let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$. Choose

$$A = \begin{pmatrix} \mathbf{I} \\ \mathbf{a}_1 \\ \mathbf{I} \end{pmatrix} \cdots \begin{pmatrix} \mathbf{I} \\ \mathbf{a}_n \\ \mathbf{I} \end{pmatrix} \in \mathbb{F}^{m \times n}$$

and the associated linear map $f_A : \mathbb{F}^n \to \mathbb{F}^m$ with $f_A : \mathbf{x} \mapsto A\mathbf{x}$. For a basis in $V = \mathbb{F}^n$, we choose $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ and in $W = \mathbb{F}^m$ canonical basis $\mathcal{C} = (\hat{\mathbf{e}}_1, \dots, \hat{\mathbf{e}}_m)$, where we choose the hats just to distinguish this basis from \mathcal{B} . For getting the matrix representation $(f_A)_{\mathcal{C}\leftarrow\mathcal{B}}$ we look what f_A does with the basis \mathcal{B} : / 🗶 = id

$$= f_A(\mathbf{e}_1) = A\mathbf{e}_1 = \mathbf{a}_1 \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_1, \qquad \dots, \qquad f_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{a}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{e}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{e}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{a}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{e}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{e}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n = \mathbf{e}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{e}_n, \qquad \mathbf{f}_A(\mathbf{e}_n) = A\mathbf{e}_n \stackrel{(*)}{=} \Phi_C^{-1} \mathbf{e}_n, \qquad \mathbf{f}_A(\mathbf$$

For the matrix representation $(f_A)_{\mathcal{C}\leftarrow\mathcal{B}}$, we write the images into the columns and get:

$$(f_A)_{C \leftarrow B} = \begin{pmatrix} | & | \\ \mathbf{a}_1 \\ | & | \end{pmatrix} = A.$$
 Matrix representation of f_A
u.r.t. standard bases
is $A \downarrow$

 $\mathbf{X}_{|G}$

 $\mathbf{x}_{|E}$

 $\mathbf{b}_1 = \mathbf{n}$

cho se

(8.13)

 \mathbf{b}_2

E

(d) Let $d: \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation by angle $\underline{\varphi}$. Choose in $V = W = \mathbb{R}^2$ the canonical basis $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$. We use the rotation d for the basis elements $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

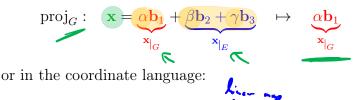
$$d(\mathbf{e}_{1}) = d\begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \cos\varphi\\ \sin\varphi \end{pmatrix} = \Phi_{\mathcal{B}}^{-1}\begin{pmatrix} \cos\varphi\\ \sin\varphi \end{pmatrix},$$
$$d(\mathbf{e}_{2}) = d\begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} -\sin\varphi\\ \cos\varphi \end{pmatrix} = \Phi_{\mathcal{B}}^{-1}\begin{pmatrix} -\sin\varphi\\ \cos\varphi \end{pmatrix}$$

The matrix representation of d with respect to the standard basis is a so-called rotation matrix

"Rotation matrix" = matrix representation of rotation with
$$\varphi$$

$$d_{\mathcal{B}\leftarrow\mathcal{B}} = \begin{pmatrix} \cos\varphi & -\sin\varphi\\ \sin\varphi & \cos\varphi \end{pmatrix}.$$
(8.12)

(e) Let $\mathbf{n} \in \mathbb{R}^3$ with $\|\mathbf{n}\| = 1$ and $\operatorname{proj}_G : \mathbb{R}^3 \to \mathbb{R}^3$ the linear map given by the orthogonal projection onto G := $\text{Span}(\mathbf{n})$. We choose a basis $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$, in both basis \mathbb{R}^3 , which fits our problem: Let $\mathbf{b}_1 := \mathbf{n}$ and \mathbf{b}_2 and \mathbf{b}_3 orthogonal to \mathbf{n} . Then:



$$(\operatorname{proj}_{G})_{\mathcal{B}\leftarrow\mathcal{B}}: \Phi_{\mathcal{B}}(\mathbf{x}) = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \mapsto \Phi_{\mathcal{B}}(\mathbf{x}_{|G}) = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

There, we can immediately see the matrix representation $(\operatorname{proj}_G)_{\mathcal{B} \leftarrow \mathcal{B}}$:

$$(\operatorname{proj}_G)_{\mathcal{B}\leftarrow\mathcal{B}} = \begin{pmatrix} \Lambda & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \boldsymbol{\beta} \end{pmatrix} =$$

Alternatively, you would calculate the images:

$$\Phi_{\mathcal{B}}(\operatorname{proj}_{G}(\mathbf{b}_{1})) = \Phi_{\mathcal{B}}(\mathbf{b}_{1}) = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\$$

8.3.3 Matrix representation for compositions

Proposition 8.15. Operations for matrix representations

(a) Let V and W be two \mathbb{F} -vector spaces with bases \mathcal{B} and \mathcal{C} , respectively. For linear maps $k, \ell \in \mathcal{L}(V, W)$ and $\alpha \in \mathbb{F}$, we have

$$(k+\ell)_{\mathcal{C}\leftarrow\mathcal{B}} = k_{\mathcal{C}\leftarrow\mathcal{B}} + \ell_{\mathcal{C}\leftarrow\mathcal{B}} \quad and \quad (\alpha\,\ell)_{\mathcal{C}\leftarrow\mathcal{B}} = \alpha\,\ell_{\mathcal{C}\leftarrow\mathcal{B}}.$$

(b) Let U be a third \mathbb{F} -vector space with chosen basis \mathcal{A} . For all $\ell \in \mathcal{L}(U, \mathbb{N})$ and $k \in \mathcal{L}(V, W)$, we have $(k \circ \ell)_{\mathcal{C} \leftarrow \mathcal{A}} = k_{\mathcal{C} \leftarrow \mathcal{B}} \ell_{\mathcal{B} \leftarrow \mathcal{A}}$.

The zero matrix 0 and the identity matrix 1 are exactly the matrix representations of the zero map $o: V \to W$ with $\mathbf{x} \mapsto \mathbf{o}$ and of the identity map $id: V \to V$ with $\mathbf{x} \mapsto \mathbf{x}$, respectively.

$$o_{\mathcal{C}\leftarrow\mathcal{B}}=0$$
 and $id_{\mathcal{B}\leftarrow\mathcal{B}}=1.$

Now choose ℓ again as a linear map $V \to W$ and also a basis \mathcal{B} in V and a basis \mathcal{C} in W. If ℓ is invertible, we immediately get:

$$(\ell^{-1})_{\mathcal{B}\leftarrow \mathcal{C}}\ell_{\mathcal{C}\leftarrow\mathcal{B}} = (\ell^{-1}\circ\ell)_{\mathcal{B}\leftarrow\mathcal{B}} = \mathbf{1}_{n} \text{ and } \ell_{\mathcal{C}\leftarrow\mathcal{B}}(\ell^{-1})_{\mathcal{B}\leftarrow\mathcal{C}} = \mathbf{1}_{m}$$
Hence:

$$A\cdot B = A_{n}$$
Homework 6.3

$$B\cdot A = A_{m}$$

Matrix representation of inverse $=$ inverse matrix	
$(\ell^{-1})_{\mathcal{B}\leftarrow\mathcal{C}} = (\ell_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}.$	(8.14)

From this, we can conclude a very important result:

Corollary 8.16. Bijectivity not possible, if $\dim(V) \neq \dim(W)$
If $\dim(V) \neq \dim(W)$, then all linear maps $\ell: V \to W$ are not invertible.

For $\dim(V) \neq \dim(W)$, you can shill have lisedire maps! (but no line ones) Proof. If ℓ is invertible, then (8.14) says the $m \times n$ -matrix $\ell_{\mathcal{C} \leftarrow \mathcal{B}}$ is invertible. This means that the matrix is a square one, hence $\dim(V) = n = m = \dim(W)$.

$$\left(\begin{array}{c}p \\ p \\ j \\ G\end{array}\right)_{B \subset B} = \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Example 8.17. (a) Let $\operatorname{proj}_G \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ be the linear operator given by the orthogonal projection onto $G := \operatorname{Span}(\mathbf{n})$. We choose the same basis \mathcal{B} in both \mathbb{R}^3 like in Example 8.14 (f). For the projection proj_E and the reflection refl_E with respect to the plane $E := {\mathbf{n}}^{\perp}$, Proposition 8.15 gives us:

$$(\operatorname{proj}_{E})_{\mathcal{B}\leftarrow\mathcal{B}} \stackrel{(8.2)}{=} (id - \operatorname{proj}_{G})_{\mathcal{B}\leftarrow\mathcal{B}} \stackrel{(8.13)}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \stackrel{"}{\operatorname{refl}_{E}} \stackrel{(8.2)}{=} (id - 2\operatorname{proj}_{G})_{\mathcal{B}\leftarrow\mathcal{B}} \stackrel{(8.13)}{=} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) Next, we again consider the differential operator $\partial : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ and the antiderivative operator $\int : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$. In $\mathcal{P}_2(\mathbb{R})$ and $\mathcal{P}_3(\mathbb{R})$ choose the monomial basis \mathcal{B} and \mathcal{C} , respectively. From Proposition 8.15 and the equations (8.10) and (8.11), we conclude

$$(\partial \circ f)_{\mathcal{B}\leftarrow\mathcal{B}} = \partial_{\mathcal{B}\leftarrow\mathcal{C}} \ \ \int_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/_3 & 0 & 0 \\ 0 & 1/_2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = id_{\mathcal{B}\leftarrow\mathcal{B}}$$

and

$$(\int \circ \partial)_{\mathcal{C}\leftarrow\mathcal{C}} = \int_{\mathcal{C}\leftarrow\mathcal{B}} \partial_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{pmatrix} \frac{1}{3} & 0 & 0\\ 0 & \frac{1}{2} & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \neq id_{\mathcal{C}\leftarrow\mathcal{C}}.$$

11 1

8.3.4 Change of basis

 $id: V \longrightarrow V$, $\oint_{e}(id(b_{1})) = b_{1}^{e}$

Let $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $\mathcal{C} = (\mathbf{c}_1, \dots, \mathbf{c}_n)$ be two bases of V. Then, the identity map $id: \mathbf{x} \mapsto \mathbf{x}$ of V with respect to \mathcal{B} and \mathcal{C} has the following matrix representation:

$$id_{\mathcal{C}\leftarrow\mathcal{B}} = \left(\Phi_{\mathcal{C}}(id(\mathbf{b}_{1})) \dots \Phi_{\mathcal{C}}(id(\mathbf{b}_{n}))\right) = \left(\mathbf{b}_{1}^{\mathcal{C}} \dots \mathbf{b}_{n}^{\mathcal{C}}\right) = T_{\mathcal{C}\leftarrow\mathcal{B}}, \quad (8.15)$$

L: V->W ~> lees hotrix w.r.t. B and C > le'es' matin w.r.t B' and e!

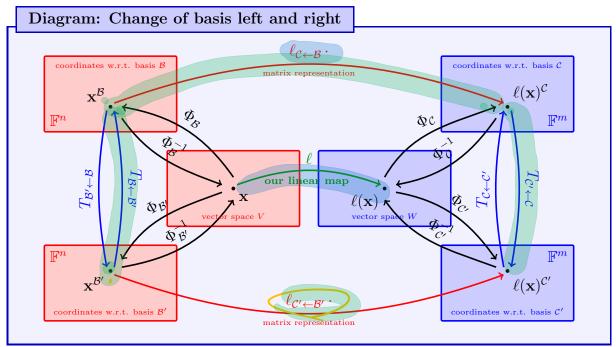
Question:

What is the relation between $\ell_{\mathcal{C}\leftarrow\mathcal{B}}$ and $\ell_{\mathcal{C}'\leftarrow\mathcal{B}'}$?

Let us try to calculate the matrices $\ell_{\mathcal{C}' \leftarrow \mathcal{B}'}$ with the help of $\ell_{\mathcal{C} \leftarrow \mathcal{B}}$:

Change of basis left and right
$$\ell_{\mathcal{C}' \leftarrow \mathcal{B}'} = (id \circ \ell \circ id)_{\mathcal{C}' \leftarrow \mathcal{B}'} = id_{\mathcal{C}' \leftarrow \mathcal{C}} \ell_{\mathcal{C} \leftarrow \mathcal{B}} id_{\mathcal{B} \leftarrow \mathcal{B}'} = T_{\mathcal{C}' \leftarrow \mathcal{C}} \ell_{\mathcal{C} \leftarrow \mathcal{B}} T_{\mathcal{B} \leftarrow \mathcal{B}'} (8.16)$$

This gives us a nice picture:



Example 8.18. Let us consider the differential operator $\partial : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ where $V = \mathcal{P}_3(\mathbb{R})$ carries the monomial basis $\mathcal{B} = (\mathbf{m}_3, \mathbf{m}_2, \mathbf{m}_1, \mathbf{m}_0)$ and an additional basis

$$\mathcal{B}' = (2\mathbf{m}_3 - \mathbf{m}_1, \ \mathbf{m}_2 + \mathbf{m}_0, \ \mathbf{m}_1 + \mathbf{m}_0, \ \mathbf{m}_1 - \mathbf{m}_0) \rightleftharpoons (\mathbf{b}'_1, \ \mathbf{b}'_2, \ \mathbf{b}'_3, \ \mathbf{b}'_4).$$

Moreover, $W = \mathcal{P}_2(\mathbb{R})$ carries the monomial basis $\mathcal{C} = (\mathbf{m}_2, \mathbf{m}_1, \mathbf{m}_0)$ and another basis

Moreover,
$$W = \mathcal{P}_2(\mathbb{R})$$
 carries the monomial basis $\mathcal{C} = (\mathbf{m}_2, \mathbf{m}_1, \mathbf{m}_0)$ and another basis
 $\mathcal{C}' = (\mathbf{m}_2 - \frac{1}{2}\mathbf{m}_1, \mathbf{m}_2 + \frac{1}{2}\mathbf{m}_1, \mathbf{m}_0) =: (\mathbf{c}'_1, \mathbf{c}'_2, \mathbf{c}'_3).$

 $\mathcal{C} \in \mathcal{B}^{+}$

 $\mathcal{C} = \mathcal{C}^{+} = \mathcal{C}^{+}$

 $\mathcal{C} = \mathcal{C}^{+}$

$$\Phi_{\mathcal{B}}(\mathbf{b}_{1}') = \Phi_{\mathcal{B}}(2\mathbf{m}_{3} - \mathbf{m}_{1}) = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \quad \Phi_{\mathcal{B}}(\mathbf{b}_{2}') = \Phi_{\mathcal{B}}(\mathbf{m}_{2} + \mathbf{m}_{0}) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
$$\Phi_{\mathcal{B}}(\mathbf{b}_{3}') = \Phi_{\mathcal{B}}(\mathbf{m}_{1} + \mathbf{m}_{0}) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad \Phi_{\mathcal{B}}(\mathbf{b}_{2}') = \Phi_{\mathcal{B}}(\mathbf{m}_{1} - \mathbf{m}_{0}) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$

In summary, we have:

$$T_{\mathcal{C}'\leftarrow\mathcal{C}} = \begin{pmatrix} 1/2 & -1 & 0 \\ 1/2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \partial_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \qquad T_{\mathcal{B}\leftarrow\mathcal{B}'} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}.$$

Using (8.16), we know that the matrix representation $\partial_{\mathcal{C}' \leftarrow \mathcal{B}'}$ is given by the product of these three matrices:

$$\partial_{\mathcal{C}' \leftarrow \mathcal{B}'} = \underbrace{T_{\mathcal{C}' \leftarrow \mathcal{C}}}_{\mathcal{C} \leftarrow \mathcal{B}} \underbrace{T_{\mathcal{B} \leftarrow \mathcal{B}'}}_{\mathcal{B} \leftarrow \mathcal{B}'} = \begin{pmatrix} 3 & -2 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}.$$
 (8.17)

Alternatively, we could directly calculate $\partial_{\mathcal{C}' \leftarrow \mathcal{B}'}$ from ∂ and the bases \mathcal{B}' and \mathcal{C}' . In order to do this, we apply ∂ to the basis elements from \mathcal{B}' and represent the results with respect to the basis \mathcal{C}' :

$$\begin{split} \Phi_{\mathcal{C}'}(\partial(\mathbf{b}'_1)) &= \Phi_{\mathcal{C}'}\left(\partial(\underbrace{2\mathbf{m}_3 - \mathbf{m}_1}_{\mathbf{b}'_1})\right) = \Phi_{\mathcal{C}'}(6\mathbf{m}_2 - \mathbf{m}_0) = \begin{pmatrix} 3\\ 3\\ -1 \end{pmatrix},\\ \Phi_{\mathcal{C}'}(\partial(\mathbf{b}'_2)) &= \Phi_{\mathcal{C}'}\left(\partial(\underbrace{\mathbf{m}_2 + \mathbf{m}_0}_{\mathbf{b}'_2})\right) = \Phi_{\mathcal{C}'}(2\mathbf{m}_1) = \begin{pmatrix} -2\\ 2\\ 0 \end{pmatrix},\\ \Phi_{\mathcal{C}'}(\partial(\mathbf{b}'_3)) &= \Phi_{\mathcal{C}'}\left(\partial(\underbrace{\mathbf{m}_1 + \mathbf{m}_0}_{\mathbf{b}'_3})\right) = \Phi_{\mathcal{C}'}(\mathbf{m}_0) = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix},\\ \Phi_{\mathcal{C}'}(\partial(\mathbf{b}'_4)) &= \Phi_{\mathcal{C}'}\left(\partial(\underbrace{\mathbf{m}_1 - \mathbf{m}_0}_{\mathbf{b}'_4})\right) = \Phi_{\mathcal{C}'}(\mathbf{m}_0) = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}. \end{split}$$

This gives us, as expected, the same matrix as in (8.17). However, we can also do another alternative computation. Choose $a, b, c, d \in \mathbb{R}$ arbitrarily. Then:

$$\begin{split} \mathbf{f}^{\mathcal{B}'} &= \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} & \stackrel{\Phi_{\mathcal{B}'}^{-1}}{\longmapsto} & \mathbf{f} = a(2\mathbf{m}_3 - \mathbf{m}_1) + b(\mathbf{m}_2 + \mathbf{m}_0) + c(\mathbf{m}_1 + \mathbf{m}_0) + d(\mathbf{m}_1 - \mathbf{m}_0) \\ &= 2a\mathbf{m}_3 + b\mathbf{m}_2 + (-a + c + d)\mathbf{m}_1 + (b + c - d)\mathbf{m}_0 \\ & \stackrel{\partial}{\longmapsto} & \partial(\mathbf{f}) = 6a\mathbf{m}_2 + 2b\mathbf{m}_1 + (-a + c + d)\mathbf{m}_0 \\ &= 6a\underbrace{\left(\frac{1}{2}\mathbf{c}'_1 + \frac{1}{2}\mathbf{c}'_2\right)}_{\mathbf{m}_2} + 2b\underbrace{\left(-\mathbf{c}'_1 + \mathbf{c}'_2\right)}_{\mathbf{m}_1} + (-a + c + d)\underbrace{\mathbf{c}'_3}_{\mathbf{m}_0} \\ &= (3a - 2b)\mathbf{c}'_1 + (3a + 2b)\mathbf{c}'_2 + (-a + c + d)\mathbf{c}'_3 \\ & \stackrel{\Phi_{\mathcal{C}'}}{\longmapsto} & \partial(\mathbf{f})^{\mathcal{C}'} = \begin{pmatrix} 3a - 2b \\ 3a + 2b \\ -a + c + d \end{pmatrix} \stackrel{\checkmark}{=} \begin{pmatrix} 3 & -2 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}. \end{split}$$

8.3.5 Equivalent and similar matrices

Both matrices

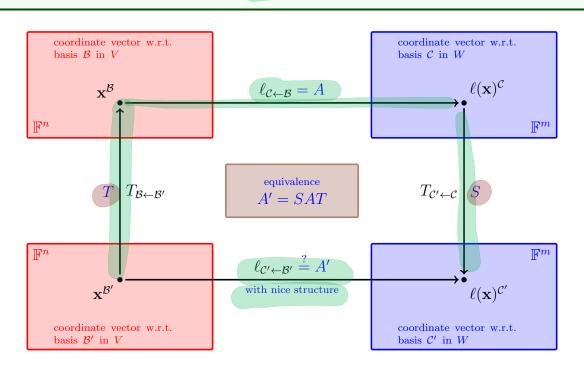
$$\partial_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad \partial_{\mathcal{C}'\leftarrow\mathcal{B}'} = \begin{pmatrix} 3 & -2 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$$

from Example 8.18 look completely different although they describe the same linear map $\partial \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$, however, with respect two different bases.

 $T_{n} \text{ general}: \quad l \in \mathcal{L}(V, W) \quad, \quad A := k_{e \in \mathcal{B}} \in \mathbb{F}^{m \times n}$ $Another matrix \quad A^{l} \in \mathbb{F}^{m \times n}$ (sinpler?)

Are there bases \mathcal{B}' and \mathcal{C}' in V and W, respectively, such that A' is the matrix representation of ℓ ,

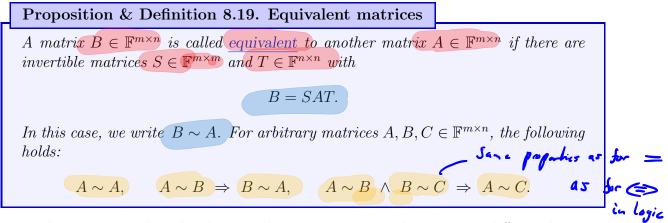
 $A' = \ell_{\mathcal{C}' \leftarrow \mathcal{B}'} ?$



We already know, cf. (8.16),

$$\ell_{\mathcal{C}'\leftarrow\mathcal{B}'} = \underbrace{T_{\mathcal{C}'\leftarrow\mathcal{C}}}_{=:S} \underbrace{\ell_{\mathcal{C}\leftarrow\mathcal{B}}}_{A} \underbrace{T_{\mathcal{B}\leftarrow\mathcal{B}'}}_{=:T} = SAT.$$

Choosing all possible bases \mathcal{B}' and \mathcal{C}' in V and W, respectively, we get all possible invertible matrices S and T and hence with $\ell_{\mathcal{C}' \leftarrow \mathcal{B}'}$ all matrices that are equivalent to A:



Equivalent matrices describe the same linear map, just with respect to different bases.