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Proposition & Definition 7.39. Still the same about orthogonality:

• For x,y ∈ V we write x ⊥ y if �x,y� = 0.

• For F = R and x,y ∈ V \ {o} we define:

angle(x,y) := arccos

� �x,y�
�x��y�

�
.

• For a nonempty set M ⊂ V we call

M⊥ := {x ∈ V : x ⊥ m for all m ∈ M}

the orthogonal complement of M . This is always a subspace of V .
Instead of x ∈ M⊥, we often write x ⊥ M .

• For x ∈ V and a subspace U of V there is a unique decomposition

x = p+ n =: x U + x U⊥

into the orthogonal projection p =: x U ∈ U and the normal component
n = x U⊥ ∈ U⊥ with respect to U . The calculation is given by

G(B)ΦB(p) =



�x,b1�...
�x,bn�


 (7.21)

for any basis B = (b1, . . . ,bn) of U , and n = x− p.

• A family B = (u1, . . . ,un) with vectors from V is called:

– Orthogonal system (OS) if ui ⊥ uj for all i, j = 1, ..., n with i �= j;
– Orthonormal system (ONS) if, in addition, �ui� = 1 for all i = 1, ..., n;
– Orthogonal basis (OB) if it an OS and a basis of V ;
– Orthonormal basis (ONB) if it an ONS and a basis of V .

• OS that do not own the zero vector o are always linearly independent.

• If B = (b1, . . . ,bn) is an OB of U , then the equation (7.21) is much simpler:

ΦB(x U) =




�x,b1�
�b1�2...
�x,bn�
�bn�2


 , i.e. x U =

�x,b1�
�b1�2

b1 + . . .+
�x,bn�
�bn�2

bn. (7.22)

If B is an ONB, then it gets also easier �bi�2 (= 1). VL20
↓

Example 7.40. (a) The vectors x =
�
1
i

�
and y =

�
0
1

�
from C2 are not orthogonal w.r.t.

the standard inner product �·, ·�euclid since

��1
i

�
,

�
0

1

��
euclid

= 1 · 0 + i · 1 = i �= 0.
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However, there are orthogonal w.r.t. the inner product given by �x,y� := �Ax,y�euclid

with A =
�
2 i
−i 1

�
, since

�x,y� =
��1

i

�
,

�
0

1

��
=

�� 2 i
−i 1

��
1

i

�
,

�
0

1

��
euclid

=
��1

0

�
,

�
0

1

��
euclid

= 0.

The orthogonal projection of x onto Span(y) can be different for different inner
products. W.r.t. �·, ·� it is o (since x ⊥ y), but w.r.t. �·, ·�euclid it is

x Span(y) =
�x,y�euclid

�y,y�euclid

y =
�
�
1
i

�
,
�
0
1

�
�euclid

�
�
0
1

�
,
�
0
1

�
�euclid

�
0

1

�
=

i

1

�
0

1

�
= i

�
0

1

�
=

�
0

i

�
.

(b) Looking at the vector space F([0, 2π]), which contains function f : [0, 2π] → R, we
define a subspace V that is spanned by the family B = (1, cos, sin). Then w.r.t the
inner product defined by

�f ,g� :=

� 1

0

f(x)g(x) dx ,

the family B is an OS:

�1, cos� =
� 2π

0

cos x dx = 0, �1, sin� =
� 2π

0

sin x dx = 0, and

�cos, sin� =
� 2π

0

cos x sin x dx = 1
2
sin2 x

���
2π

0
=

sin2 2π − sin2 0

2
= 0.

Because of

�1, 1� =
� 2π

0

1 dx = 2π, �cos, cos� =
� 2π

0

cos2 x dx = π, �sin, sin� =
� 2π

0

sin2 x dx = π

the new family
�

1√
2π

,
cos√
π
,
sin√
π

�
is an ONB of V .



7.5 General vector space with inner product and norms 31

Remark: Gram-Schmidt orthonormalisation
Given: Let V be a pre-Hilbert space and C a family of vectors from V .
To Find: An ONB B of Span(C).

Algorithm:

Initialise B as the empty set ( );
For all u in C:

Set v := u− u Span(B);
If v �= o:

Set w := v
�v� ;

Add w to B

If you cancel the algorithm at some point, the family at this point, B = (w1, . . . ,wk), is
a ONB of the Span(w1, . . . ,wk).

Recall that for this ONB B = (w1, . . . ,wk) the orthogonal projection u Span(B) is calculated
by

u Span(B) = �u,w1�w1 + . . .+ �u,wk�wk.

Example 7.41. The monomials C = (m0,m1,m2) do not form an ONB in P([−1, 1])

w.r.t. �f ,g� =
� 1

−1
f(x)g(x) dx. We can apply the Gram-Schmidt procedure for C. Here

it is useful to start with the numbering indices 0, 1, 2, ...

v0 = m0 = 1, =⇒ w0(x) =
v0(x)

�v0�
=

1√
2
,

v1 = m1 − �m1,w0�� �� �
0

w0 = m1, =⇒ w1(x) =
v1(x)

�v1�
=

�
3

2
x,

v2 = m2 − �m2,w0�� �� �
√
2

3

w0 − �m2,w1�� �� �
0

w1, =⇒ w2(x) =
v2(x)

�v2�
=

�
45

8

�
x2 − 1

3

�
.

B = (w0,w1,w2) is an ONB for Span(C) = P2([−1, 1]). The polynomials w0,w1,w2 (or
also with other normalisation factors) are called the Legendre polynomials. If we add the
other monomials m3,m4, ..., we get the next Legendre polynomials.

Summary
• Vectors are elements in a set, called a vector space V , that one can add together

and scale with numbers α from R or C, without leaving the set V . The addition
and scalar multiplication just have to satisfy the rules (1)–(8) from Definition 7.1.
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• If you know that a set V with two operations + and α· is a vector space and if
you want to show that also a subset U �= ∅ of V form a vector space, then you do
not have to check (1)–(8) again, but only (a) and (b) from Proposition 7.7. This is
called a subspace of V .

• The definitions linear combination , span, generating system , linearly (in)dependent ,
basis and dimension are literally the same in Chapter 3.

• If you fix a basis B = (b1, . . . ,bn) in V , then each x ∈ V has a uniquely determined
linear combination x = α1b1 + · · ·+αnbn. The numbers α1, . . . ,αn ∈ F (F is either
R or C) are called the coordinates of x w.r.t. B. This defines the vector ΦB(x) ∈ Fn.

• Changing the basis of V from B to C also changes the coordinate vector from
ΦcB(x) ∈ Fn to ΦC(x) ∈ Fn. This change can be describes by the transformation
matrix TC←B.

• One always has TB←C = T−1
C←B. Sometimes, it is helpful to go a detour TB←C =

TB←ATA←C where A is a simple and well-known basis.

• An inner product �·, ·� is a map, which takes two vectors x,y ∈ V and gives out a
number �x,y� in F. It has to satisfy the rules (S1)–(S4) from Definition 7.23.

• If A ∈ Fn×n is selfadjoint and positive definite , then �x,y� := �Ax,y�euclid defines an
inner product in Fn. Here �·, ·�euclid is the well-known standard inner product in Rn

(Chapter 2) or Cn (Chapter 6).

• A norm � · � is a map that sends a vector x ∈ V to number �x� ∈ R and satisfy the
rules (N1)–(N3) from Definition 7.33.

• An inner product �·, ·� always defines a norm �x� :=
�
�x,x�.

• By having an inner product, we can talk about orthogonal projection x U for a vector
x ∈ V w.r.t. a subspace U ⊂ V .
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General linear maps

We have also seen that for a given matrix A ∈ Rm×n

there is an associated map

fA : Rn → Rm with x �→ Ax

which fulfils two properties (+) and (·) and therefore
is called a linear map.

matrix A

chapter 3

�

� chapter 8

linear map �

Now in Chapter 8, with the power of general vector spaces, we also can consider general
linear maps between arbitrary F-vector spaces V and W .

8.1 Definition: Linear maps

Let F be either R or C again. Let V and W be two F-vector spaces. It is important that
for both the same field F is chosen.

Definition 8.1. Linear map

A map � : V → W is called a linear map, linear function or linear operator if �
satisfies the two following properties. For all x,y ∈ V and α ∈ F:

(L+) �(x+ y) = �(x) + �(y), (additive)
(L · ) �(αx) = α �(x). (homogeneous)

If W = F, one often calls � a linear functional.

33
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Proposition 8.2. Linear maps send o to o.

For a linear map � : V → W , we have �(oV ) = oW .

Proof. For arbitrary x ∈ V , we use (L·): �(oV ) = �(0x) = 0 �(x) = oW .

In the following examples F stands for R or C.

Example 8.3. (a) For V = W = F, let �(x) = 3x. We can easily check (L+) and (L·).

(b) For V = F and W = F2, let �(x) = x
�
3
1

�
. Obviously, � satisfies (L+) and (L·).

(c) Let � : F3 → F defined by �(x) = �x, a�euclid = a∗x with fixed a ∈ F3, e.g.

a =

�
2
1
3

�
, hence � :

�
x1
x2
x3

�
�→

��x1
x2
x3

�
,

�
2
1
3

��
euclid

= (2 1 3)

�
x1
x2
x3

�
.

Using the definition of an inner product, we know that � is linear.

(d) Define � : F3 → F by �(x) = det(x a2 a3) with fixed a2, a3 ∈ F3, e.g.

a2 =



1
0
2


 , a3 =



3
1
1


 , hence � : x =



x1

x2

x3


 �→ det


x a2 a3


 = det



x1 1 3
x2 0 1
x3 2 1


 .

We know from the definition of the determinant that � is linear. Using Laplace’s
formula, we can rewrite �:

�(x) = x1 det

�
0 1
2 1

�

� �� �
−2

−x2 det

�
1 3
2 1

�

� �� �
−5

+x3 det

�
1 3
0 1

�

� �� �
1

= (−2 5 1)

�
x1
x2
x3

�

(e) The map � : F2 → F2 defined by
�
x1

x2

�
�→

�
4x1+3x2

x2+7

�
is not linear because �(o) =

�
0
7

�
�= o.

(f) For A ∈ Fm×n define fA : Fn → Fm by fA : x �→ Ax. This is a linear map by
Proposition 3.14. For example, F = R and m = n = 2, look at how fA acts on houses.
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Let

A =

�
a1 a2

�
∈ R2×2.

We know:

o
fA�→ o, e1

fA�→ a1, e2
fA�→ a2

and the rest of the plane is given by
linearity.

e1

e2

0

fA

a1

a2

0

The last example (f) includes all the other examples (a)–(e): We always find a corres-
ponding matrix �(x) = Ax.

Now let us look for some abstract vector spaces:

Example 8.4. (a) Let V = F(R), W = R and δ0 : V → W the evaluation for a function
f ∈ V in the origin 0, which means δ0 : f �→ f(0). Then δ0 is linear. (Show it!)

Another example would be a evaluation at different points and using linear combina-
tions: � : f �→ 3f(0)− 7f(1

4
) + 5f(1).

(b) Let ∂ be the differential operator from V = P3(R) to W = P2(R), which means ∂
sends a polynomial f ∈ P3(R) to its derivative f � ∈ P2(R).

(c) In the same manner, we can look at the map P3(R) → P1(R) with f �→ f �� given by the
second derivative. In the same way, a combination is possible, f �→ f ���+3f ��−2f �+4f
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as a map P3(R) → P3(R).
(d) Instead of using the derivative of a polynomial f ∈ P([a, b]) =: V or evaluating it in

one point, we can use the integration, hence the map i : f �→
� b

a
f(x) dx. Therefore,

in this case, we have V = P([a, b]) and W = R. Again, we get a linear map:
� b

a

�
f(x) + g(x)

�
dx =

� b

a

f(x) dx+

� b

a

g(x) dx and
� b

a

αf(x) dx = α

� b

a

f(x) dx.

(We also talk about the integration in mathematical analysis next semester.)

8.2 Combinations of linear maps

8.2.1 Sum and multiples of a linear map

Definition 8.5. Sum and scaled linear maps

Let V and W be two F-vector space (with same F!) and let k : V → W and
� : V → W be linear maps. Then we define k+� : V → W by

(k+�)(x) := k(x) + �(x) for all x ∈ V,

and for α ∈ F, we define α · � by

(α · �)(x) := α · �(x) for all x ∈ V.

The operations + and α· on the right-hand side are the operations in W .
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Proposition & Definition 8.6. Vector space of linear maps V → W

The maps k+� and α·� from Definition 8.5 are again linear maps from V to W .

The set of all linear maps from V to W equipped with the two operations + and α·
form again an F-vector space. We denote this vector space by L(V,W ).

The zero vector in L(V,W ) is the zero map o : V → W defined by o(x) = o for all
x ∈ V .

Proof. Let k, � : V → W be linear and let x,y ∈ V and α ∈ F. Then:

(k+ �)(x+ y)
Def. 8.5
= k(x+ y) + �(x+ y)

(L+)
= k(x) + k(y) + �(x) + �(y)

= k(x) + �(x) + k(y) + �(y)
Def. 8.5
= (k+ �)(x) + (k+ �)(y)

and (k+ �)(αx)
Def. 8.5
= k(αx) + �(αx)

(L ·)
= α k(x) + α �(x) = α

�
k(x) + �(x)

�

Def. 8.5
= α(k+ �)(x),

which means k+ � has two properties (L+) and (L·) and is also linear. In the same
manner, we see that α · � is linear.

From now on, we do not write the two operations + and α· in L(V,W ) in red anymore.
However, keep in mind that these are different operations than + and α· in W .

Example 8.7. – Projection and reflection. Let n ∈ Rn be a vector �n� = 1 and
G := Span(n) the spanned line. For all x ∈ Rn, we can calculate the orthogonal projection

xG =
�x,n�euclid

�n,n�euclid

n = �x,n�euclidn = n�x,n�euclid = n(n�x) = (nn�)x

.

Hence the map

projG : Rn → Rn with projG(x) := xG = (nn�)x, (8.1)

defines a linear map Rn → Rn. We also know that is given by the associated matrix:
projG = fnn� .
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Using the orthogonal decomposition

x = xG + xE ,

we also can also define the linear map

projE : Rn → Rn

which is the orthogonal projection onto
E := G⊥ = {n}⊥:

projE(x) := xE = x− xG.

Subtracting the orthogonal projection x G

again, we get the reflection of x with respect
to the hyperplane E.

−x|G

E

G

·
x|E

x|G

n

−x|G

0

x

projE(x)

reflE(x)

projG(x)

Hence, we define:

reflE : Rn → Rn with reflE(x) := xE − xG = x− 2xG.

In other words:

projE = id− projG and reflE = id− 2 projG. (8.2)

Here, id : Rn → Rn is the identity map id : x �→ x. By these formulas, we can conclude,
projE, reflE ∈ L(Rn,Rn).

8.2.2 Composition and inverses

Recall that you can form the composition of two maps � : U → V and k : V → W by
setting:

(k ◦ �)(x) = k(�(x)) for all x ∈ U. (8.3)

Proposition 8.8. Composition of linear maps is linear.

Let U, V,W be F-vector spaces and let � : U → V and k : V → W be linear maps.
Then, the composition k ◦ � : U → W is also linear. In short:

� ∈ L(U, V ), k ∈ L(V,W ) ⇒ k ◦ � ∈ L(U,W ) .

Let compose the maps from Example 8.7:
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Example 8.9. Recall both projections

projG : x �→ nn�x and projE = id− projG

and the reflection
reflE = id− 2 projG.

All three maps act between Rn → Rn and can be composed in all possible ways.

We already know that projecting more than once does not change anything:

projG ◦ projG = projG and projE ◦ projE = projE. (8.4)

For the reflection, we expect that using it two times brings us back to the beginning,
which means that we should get the identity map:

reflE ◦ reflE = (id− 2 projG) ◦ (id− 2 projG)

= id ◦ id� �� �
id

− id ◦ 2 projG� �� �
2 projG

− 2 projG ◦ id� �� �
2 projG

+2projG ◦ 2 projG� �� �
4 projG

= id.

Composition of both projections gives us the zero map:

projG ◦ projE = projG ◦ (id− projG) = projG ◦ id� �� �
projG

− projG ◦ projG� �� �
projG

= o. (8.5)

In the same way, projE ◦ projG = o. We also can calculate:

reflE ◦ projG = −projG and reflE ◦ projE = projE. (8.6)

Changing the order gives us the same result.

We again look at more abstract examples:

Example 8.10. (a) Let δ0 : P2(R) → R given by δ0 : f �→ f(0) the point evaluation and
∂ : P3(R) → P2(R) the differential operator ∂ : f �→ f � from Example 8.4 (a) and (b).
Then, the composition δ0 ◦ ∂ from P3(R) to R is given by

f
∂�→ f �

δ0�→ f �(0), hence δ0 ◦ ∂ : f �→ f �(0).

The reverse composition ∂ ◦ δ0 is not defined!
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(b) Let ∂ : P3(R) → P2(R) be the differentiation f �→ f � and, in addition,
�

: P2(R) →
P3(R) the map that sends f ∈ P2(R) to the function F with

F(x) =

� x

0

f(t) dt for all x ∈ [0, 1] .

We get:

f
�
�→ F

∂�→ F� = f , hence ∂◦
�
: f �→ f , which means ∂◦

�
= id : P2(R) → P2(R).

We can also build the converse composition of ∂ and
�

. Is
�
◦ ∂ then the identity

map id : P3(R) → P3(R)?
Let f ∈ P3(R) be arbitrary, which means f(x) = ax3 + bx2 + cx + d with some
a, b, c, d ∈ R. Then ∂(f) = f � with f �(x) = 3ax2 + 2bx + c. Now, we use

�
: The

function g := (
�
◦ ∂)(f) =

�
(∂(f)) =

�
(f �) satisfies:

g(x) =

� x

0

f �(t) dt =

� x

0

�
3at2 + 2bt+ c

�
dt = at3 + bt2 + ct

���
x

0
= ax3 + bx2 + cx

for all x. Hence, (
�
◦ ∂)(f) �= f if d �= 0. We see that “+d ” is lost. We conclude�

◦ ∂ �= id.

Reminder: Inverse maps

We call a map f : V → W invertible if there is another map g : W → V with

f ◦ g = idW and g ◦ f = idV

Since g uniquely determined, it is called the inverse map of f and denoted by f−1.

Recall that bijective and invertible are equivalent notions for maps.

However, here, we are only interested in linear maps between vector spaces. As mentioned
in Chapter 3, we have the following interesting result:

Proposition 8.11. Inverses are again linear.

If � : V → W is a linear map that is bijective, then its inverse �−1 : W → V is also
linear

Example 8.12. Recall that we already considered a linear map in Section 7.4, namely
the map ΦB : v �→ vB, which maps a vector v from an F-vector space V to its coordinate
vector vB ∈ Fn with respect to a basis B.
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Remark:
A linear map � : V → W exactly conserves the structure of the vector spaces,
meaning vector addition and scalar multiplication. Therefore, mathematicians call
a linear map a homomorphism. A homomorphism � that is invertible and has an
inverse �−1 that is also a homomorphism is called an isomorphism.

8.3 Finding the matrix for a linear map

8.3.1 Just know what happens to a basis

Rule of thumb: Linearity makes it easy

For a linear map, you only have to know what happens to a basis. The remaining
part of space “tags along”.

Let � : V → W be a linear map and B = (b1, . . . ,bn) some basis of V . For each x ∈ V ,
we denote by ΦB(x) ∈ Fn its coordinate vector, which means

ΦB(x) =



α1...
αn


 ∈ Fn with x = α1b1 + · · ·+ αnbn = Φ−1

B



α1...
αn


 .

Then:

�(x) = �(α1b1 + · · ·+ αnbn) = α1�(b1) + · · ·+ αn�(bn)

Equation (8.7) says everything: If you know the images of the all basis elements, which
means �(b1), . . . , �(bn), then you know all images �(x) for each x ∈ V immediately.

Example 8.13. Let V = P3(R) with the monomial basis B = (m0,m1,m2,m3) where
mk(x) = xk. For the differential operator ∂ ∈ L(P3(R),P2(R)) where ∂ : f �→ f �, we have

∂(m0) = o, ∂(m1) = m0, ∂(m2) = 2m1, ∂(m3) = 3m2, (8.7)

For an arbitrary p ∈ P3(R), which means p(x) = ax3 + bx2 + cx + d for a, b, c, d ∈ R or
p = dm0 + cm1 + bm2 + am3, we have

pB =




d
c
b
a


 and hence ∂(p) = d∂(m0)+c∂(m1)+b∂(m2)+a∂(m3) = cm0+2bm1+3am2.

Checking this: p�(x) = 3ax2 + 2bx+ c, hence ∂(p) = p� = 3am2 + 2bm1 + cm0.
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8.3.2 Matrix of a linear map with respect to bases

Let us consider again two arbitrary finite-dimensional F-vector spaces V and W and linear
maps between them.

vector space V

with basis B
vector space W

with basis C

vector space Fn vector space Fm

x �(x)

ΦB(x) ΦC(�(x))

�

ΦB Φ−1
B ΦC Φ−1

C

matrix

Question:

How to get the map or the matrix in the bottom. How to send the coordinate vector
ΦB(x) to the coordinate vector ΦC(�(x))?

Of course, this is given by composing the three maps:

ΦC(�(x)) = (ΦC ◦ � ◦ Φ−1
B )(ΦB(x))

(ΦC ◦ � ◦ Φ−1
B )(ej) = ΦC(�(Φ

−1
B (ej))) = ΦC(�(bj))

This gives us a matrix that really represents the abstract linear map. It depends, of course,
on the chosen bases B and C in the vector spaces V and W , respectively. Therefore, we
choose a good name:

Matrix representation of the linear map

For the linear map � : V → W , we define the matrix

�C←B :=


ΦC(�(b1)) · · · ΦC(�(bn))


 ∈ Fm×n (8.8)

and call it the matrix representation of the linear map � with respect to the basis B
and C.


