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Proposition & Definition 7.39. Still the same about orthogonality:

e Forx,y € V we writex Ly if (x,y) =0.
e ForF =R and x,y € V' \ {o} we define:

angle(x,y) = arccos( (x.y) >
Iyl

e For a nonempty set M C V we call
M* = {xeV:x 1l m foralme M}

the orthogonal complement of M. This is always a subspace of V.
Instead of x € M+, we often write v L M.

o Forx €V and a subspace U of V' there is a unique decomposition
X = p+n = X+ X

into the orthogonal projection p =: x; € U and the normal component
n = x;. € UL with respect to U. The calculation is given by

<X, b1>
G(B) ¢5(p) = : (7.21)

(x, b)
for any basis B = (by,...,b,) of U, and n = x — p.

o A family B = (uy,...,u,) with vectors from V 1is called:
— Orthogonal system (0S) ifu; Lu; for alli,j=1,...,n with i # j;
— Orthonormal system (ONS) if, in addition, |u;|| =1 for alli=1,...,n;
— Orthogonal basis (OB) if it an OS and a basis of V;
— Orthonormal basis (ONB) if it an ONS and a basis of V.

e OS that do not own the zero vector o are always linearly independent.

e IfB=(by,...,b,) is an OB of U, then the equation (7.21) is much simpler:

(x,b1)
D1k (x,b;) (x,bn)
Op(x);) = : , Gel Xpy=-—=b;+...+-—=Db, (7.22)
U b SN R

If B is an ONB, then it gets also easier ||b;||* (= 1).

Example 7.40. (a) The vectors x = (}) and y = () from C? are not orthogonal w.r.t.

the standard inner product (-, -)..a Since

(L) v

VL20
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However, there z%;e/ orthogonal w.r.t. the inner product given by (x,y) := (AX, ¥) cueia
with A = é—, ]li since

-0 0)- @D O+ ]

The orthogonal projection of x onto Span(y) can be different for different inner Y
products. W.r.te (-, +) it is 0 (since x L y), but w.r.t. (-, ) euena it is

Gy (g (-G (0)_O0)_(0)_(O)
50 "y Woia” () (Dewera \L/ (TN A1 T
(b) Looking at the vector space F([0,27]), which contains function f : [0,27] — R, we

define assubspace V that is spanned by the family B = (1, cos, sin). Then w.r.t the
inner product defined by /r /I‘ fl‘

)(ju ,\

ey = | tajsads.

the family B is an OS:

27 27
(1,cos) = [ A-coszdx =0, (1,sin) = [ A-sinxdz =0, and
p—

0 —_— 0

f/\ A 7
\ /e g | 7=

/27r 2 sin? 27 — sin?0
0

(cos, sin) = kcos x)éin :E)dx =lgin’z| = 5
0

Because of tnathcmahed “valyri

27 27 C/ 2
(1,1) = / ldx = 2w, (cos,cos) = / cos’vdr = m, (sin,sin) = / sin® v dr =
0 0 0

hor‘\d(-fs-r,

cos  sin

VIt VT VT
I 5 Rcke ek i gmed

L\ CVD, yoa cam coloulh @\B(}) asily
55 °(4'L4+"‘+ du'Lh => £=<51L}.>

the new family ( ) is an ONB of V.
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_I Remark: Gram-Schmidt orthonormalisation |

Given: Let V be a pre-Hilbert space and C a family of vectors from V.
To Find: An ONB B of Span(C).

Algorithm: 7/’
|

/)
Initialise B as the empty set ();
For all u in C:

Set V=u — u|Sp§n(B);
If v # o: v,

Vi .
Ivil’

Add'w to B

Setlw =

If you cancel the algorithm at some point, the family at this point, B = (wy,...,wy), is
a ONB of the Span(wy, ..., wg).

Recall that for this ONB B = (wy, ..., wy) the orthogonal projection U, (5 18 calculated

b
’ = (u,w)wy + ...+ (u, wi)wg. / 3: [—”/ ’U—>R

ulSpan (B)

e.
:H )- Xex

Example 7 41. The monomlals C = (mg,ml,mg) do not form an ONB in P([-1,1])

w.r.t. f f(z)g(x) dz. We can apply the Gram-Schmidt procedure for C Here
it is useful to Start Wlth the numbering indices 0, 1, 2, ... N
Vo 1 \(4 JX
VOZI'IIO:L —— Wo(JT):f
||Vo|| V2~
V1 3
Vi =1Im; — <m1,W0> Wo = 1My, e Wl(x) = — e~
o A i V2" [~
\\
X-=d X 7/ > k.../) deI( = [—
-

va(z) 45 (5 1
Vo =1y — (Mg, Wo (my, wi) Wy, W () [val| 3 T 3

W
f\ 'LAJX ‘CJ-xe >

“A
B = (wo, w1, ws) is an ONB for Span(C) = Pa([—1,1]). The polynomials wg, w1, wy (or
also with other normalisation factors) are called the Legendre polynomials. If we add the
other monomials mg, my, ..., we get the next Legendre polynomials.

Summary
e Vectors are elements in a set, called a vector space V', that one can add together
and scale with numbers a from R or C, without leaving the set V. The addition
and scalar multiplication just have to satisfy the rules (1)—(8) from Definition 7.1.
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If you know that a set V with two operations + and «- is a vector space and if
you want to show that also a subset U # @ of V' form a vector space, then you do
not have to check (1)—(8) again, but only (a) and (b) from Proposition 7.7. This is
called a subspace of V.

The definitions linear combination, span, generating system, linearly (in)dependent,
basis and dimension are literally the same in Chapter 3.

If you fix a basis B = (by,...,b,) in V, then each x € V has a uniquely determined
linear combination x = a;by + - - - + a;,b,. The numbers ay, ..., a, € F (F is either
R or C) are called the coordinates of x w.r.t. B. This defines the vector ®5(x) € F".

Changing the basis of V from B to C also changes the coordinate vector from
O.p(x) € F" to ®c(x) € F". This change can be describes by the transformation
matriz Te_g.

One always has Tp. ¢ = 1, iB. Sometimes, it is helpful to go a detour Tz, ¢ =
TgeaT 4c where A is a simple and well-known basis.

An inner product (-,-) is a map, which takes two vectors x,y € V and gives out a
number (x,y) in F. It has to satisfy the rules (S1)—(S4) from Definition 7.23.

If A € F™*" is selfadjoint and positive definite, then (X,y) := (AX,¥)euna defines an
inner product in F". Here (-, -)..q is the well-known standard inner product in R”
(Chapter 2) or C™ (Chapter 6).

A norm || - || is a map that sends a vector x € V' to number ||x|| € R and satisfy the
rules (N1)-(N3) from Definition 7.33.

An inner product (-,-) always defines a norm ||x|| := \/(x, x).

By having an inner product, we can talk about orthogonal projection xj;; for a vector
x € V w.r.t. a subspace U C V.
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JIR >IR"'

CdnSrvar Jl‘ “Jll-""-h-

We have also seen that for a given matrix A € R™*" ead  Ssealer h...UJJL'ch-\
there is an associated map
fa:R* - R™ with X — Ax matriz A
which fulfils two properties (4) and () and therefore z -
is called a linear map. /’\ chapter 3 (@ROET &

:{A(Y")’) = J(A(") I (X) linear map ¢
SAQXY = 25400

Now in Chapter 8, with the power of general vector spaces, we also can consider general

linear maps between arbitrary F-vector spaces V and W.

(’> 1""‘* L Jlm. a[(;,- (

thn A h«'(n'x‘l.'

8.1 Definition: Linear maps

"/‘f n o,

Let F be either R or C again. Let V' and W be two F-vector spaces. It is important that

for both the same field F is chosen.

| Definition 8.1. Linear map

A map ¢ V. — W is called @ linear map, dinear function or linear operator if ¢

satisfies the two following properties. For all x,y € V and a € F:
4 ¢l & + n W
(L+) lx+y) = {x)+Ly), (additive)

(L-) 604&( b a\{(

If W =T, one often calls ¢ a mear funcmonal

x) (homogeneous)

33
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Proposition 8.2. Linear maps send‘o to o.

For a linear map € : V. — W, we have {(oy) = ow.

Proof. For arbitrary x € V', we use (L-):" £(oy) = ¢(0x) = 04(x) = oW . O

In the following examples F stands for R or C.

Example 8.3. (a) For V=W =F. let {(x) = 3x. We can easily check (L+) and (L-).

A
K{R—-NKCNJ,L /1/ )

(b) For V.=TF and W =F? let {(z) = z(?). Obviously, ¢ satisfies (L+) and (L-).

- 1

- i

+F>

(c) Let £ :F? — T defined by £(x) = (x,a).,.aq = a*x with fixed a € F3, e.g.
‘—/

2 T T 2 T
a=1[1], hence 0|z r—>< x|, |1 > =(213)| s |.
3 X3 XT3 3 euclid A X3

A
=JCA

Using the definition of an inner product, we know that ¢ is linear.
(d) Define ¢ : F? — F by £(x) = det(x ay a3) with fixed ay, a3 € F3, e.g.

1 3 ) | | | 13
aa=|0],a3=|1], hence /:x=|x3| +—>det|XAaaz3| =det|zs 0 1
2 1 T3 Z3 2 1

We know from the definition of the determinant that ¢ is linear. Using Laplace’s
formula, we can rewrite £:

xy
f(x):xldet 0 : —$2det 1 3 —|—x3det 1 3 :(—251)' i)
2 1 2 1 01 .

=7 —5 1

?-3

(e) The map ¢ : F? — 2 defined by (i;) > (4’;1;3;2) is not linear because £(0) = (2) # 0.

(f) For A € F™*" define f4 : F* — F™ by fa : x — Ax. This is a linear map by

Proposition 3.14. For example, F = R and m = n = 2, look at how f4 acts on houses.
— ——
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Let
| oo A
A= [a a3 | ¢ R** fa
I es —_ a
We know: - O . 0
e
fa fa fa 0 L
OH— 0, €ejr—~a, €t~ a | s

and the rest of the plane is given by

linearity.
The last example (f) includes all the other examples (a)-(e): We always find a corres-
ponding matrix /(x) = Ax.

A- () fe) ] e Lo
| |
(-4

o e Hoo ok for V> W7

Now let us look for some abstract vector spaces:

Example 8.4. (a) Let V= F(R), W =R and dy : V' — W the evaluation for a function
f € V in the origin 0, which means g : f > £(0). Then dy is linear. (Show it!)

\ /\\ R 5,({)_—,)((0) Xo(fv):(fv)(o)

Another example would be a evaluation at different points and using linear combina-

tions: £ : f — 3f(0) — 7£(3) + 5F(1).

(b) Let 0 be the differential operator from V' = P3(R) to W = Pa(R), which means 0
sends a polynomial f € P3(R) to its derivative f* € Po(R).

9: > Ty,
J-x- f|(X)=?x
(fU)‘ = fl“'J\ (jfrr- sehuol)

(c) In the same manner, we can look at the map P3(R) — P;(R) with f — £” given by the
second derivative. In the same way, a combination is possible, f s ' 4+ 3f" —2f’ +4f

<, = flr+50) < £(5)« 4(y)

v/
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as a map Ps(R) — P3(R).
(d) Instead of using the derivative of a polynomial f € P([a,b]) =: V or evaluating it in

one point, we can use the integration, hence the map i : f — fab f(z) dx. Therefore, /\
in this case, we have V' = P([a,b]) and W = R. Again, we get a linear map: 5 k s
b b b b b .
/ (f(z) + g(x)) dx:/ f(x) da:+/ g(z)dx and / af () dmza/ f(x) d. ¢

(We also talk about the integration in mathematical analysis next semester.)

—
> e &, ,9 ¢, v Wl fud d
ch— -ﬁ 5/4/':.

-,-L‘ c"ﬁrhnAam"

8.2 Combinations of linear maps @a!; @3 '. v_> |Fh ‘

8.2.1 Sum and multiples of a linear map

| Definition 8.5. Sum and scaled linear maps

Let V. and W be two F-vector space (with same F!) and let k : V. — W and
0.V — W be linear maps. Then we define k+£€:V — W by

(BHO)(x) = k(x)+£(x) forall xeV,
and for o € F, we define a.- ¢ by + o W

o in (v
(- 0)(x) == a-l(x) forall xeV.

The operations + and «- on the right-hand side are the operations in W.
A
1 K

no A

k+ g
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| Proposition & Definition 8.6. Vector space of linear maps V' — W

The maps k+L€ and a-€ from Definition 8.5 are again linear maps from V to W.
The set of all linear maps from V to W equipped with the two operations + and a-
form again an F-vector space. We denote this vector space by L(V, W).

The zero vector in L(V, W) is the zero map 0: V' — W defined byo(x) = o for all
xeV.

Proof. Let k,¢:V — W be linear and let x,y € V and o € F. Then:

Def.8.5 (L+)

k(x+y)+lx+y) = kx)+k(y)+4x)+y)
= k(%) + £(x) + k(y) + €y) "L (k+ 0) EXk + O)(y)

(k+0(x@y)

and (k+0)(ax) Del.85 k(ax) + £(ax) R k(x) + al(x) = a(k(x) + ((x))

TE T alk+ (),

which means k+ ¢ has two properties (L+) and (L-) and is also linear. In the same
manner, we see that « - £ is linear. Shaw (/l) ..(g) of  un ekeraire | O

From now on, we do not write the two operations + and «- in £(V, W) in red anymore.
However, keep in mind that these are different operations than + and @-in W.

Example 8.7. —Projection and reflection. Let n € R" be a vector |[n|| = 1 and
G := Span(n) the spanned line. For all x € R™, we can calculate the orthogonal projection

i — Mn = (X, ) gl = N(X, N) yepiq = n(nTx) = (nnT)X
<n7 n>euc1id /
é"lq'A hﬂvt'dgh
Hence the map
projz : R = R" with proja(x) := x,, = (nn')x, (8.1)

defines a linear map R™ — R™. We also know that is given by the associated matrix:
prOjG = fnnT‘
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Using the orthogonal decomposition
X = X + Xg,

we also can also define the linear map

| —Xic
projgp : R" — R" :
which is the orthogonal projection onto g/ X5 ¥ proj p(x)
E =G+ = {n}+: E

projp(x) =X = X — X

Subtracting the orthogonal projection x|,
again, we get the reflection of x with respect a reflp(x)
to the hyperplane E.

Hence, we define:

refly : R" — R" with reflg(x) = x5 — x|, N

In other words:

projp = id — projg and reflp = id — 2 projg. (8.2)
Here, id : R® — R" is the identity map id : x — x. By these formulas, we can conclude,
projg, refly € L(R", R™). {Ld 5

=5y )
8.2.2 Composition and inverses
Recall that you can form the composition of two maps ¢ : U — V and k : V — W by
O— — — e

setting:
(kol)(x) = k({(x)) forall xeU. (8.3)

4 k

| Proposition 8.8. Composition of linear maps is linear.

Let U,V,W be F-vector spaces and let £ : U — V and k : V. — W be linear maps.
Then, the composition kot : U — W is also linear. In short:

e LUV), ke LV,W) = kole LUW).

Let compose the maps from Example 8.7:

(Emfcr‘?m-{‘i ko([,,+ L_) = (k, [4> -+ (I:a[‘) E)(ecc;“!
(kek) ol = (ko) 4 (k0 £)
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Example 8.9. Recall both projections

Projg : X — nn' x and projp = td — projq

and the reflection
reflp = td — 2 proj.

All three maps act between R” — R™ and can be composed in all possible ways.

(roe( fric ) = peja (+)
e (o3s()) = o

N

We already know that projecting more than once does not change anything:
Projg © projs = proje and  projg o projz = projg. (8.4)

For the reflection, we expect that using it two times brings us back to the beginning,
which means that we should get the identity map:

reflg orefly = (id — 2 projs) o (id — 2 projs)

=jidoid —éd o ZErojg—gproég o ich+gprojG32projG =id.
id 2projqg 2projg 4projg

Composition of both projections gives us the zero map:

Projg © projy = projg o (id — proj;) = projg © id <= projg © proja = o. (8.5)
PTOJG P;(gG

In the same way, projg o proj, = o. We also can calculate:
reflg o proj, = —proje and reflg o projp = projg. (8.6)
Changing the order gives us the same result.

We again look at more abstract examples:

Example 8.10. (a) Let dp: P2(R) — R given by &y : £ — £(0) the point evaluation and
0 : P3(R) — Po(R) the differential operator 0 : f — f’ from Example 8.4 (a) and (b).
Then, the composition dy 0 d from P3(R) to R is given by d

TR) >P(R)>R

£S5 % £(0), hence (dpo0d:f > £(0).

The reverse composition 0 o dy is not defined!
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(b) Let 0 : P3(R) — Pa(R) be the differentiation f — £’ and, in addition, [ : Po(R) —
P3(R) the map that sends f € Py(R) to the function F with

F(z) = /Oxf(t)dt for all z € 0,1].

We get:
J.

f F+% F =f hence dof:fsf, which means 8o =id: Py(R) — Py(R).

We can also build the converse composition of d and [. Is [0 @ then the identity
map id : P3(R) — P3(R)?

Let f € P3(R) be arbitrary, which means f(z) = ax® + bz? + cx + d with some
a,b,c,d € R. Then 9(f) = ' with f'(z) = 3az?® + 2bx + ¢. Now, we use [: The
function g := ([0 9)(f) = [(I(f)) = [(f’) satisfies:

g(x):/ f/(t)dt:/ (3a12 + 20t + ¢) dt = at® + b2 + ct| = az® + ba® + cx
0 0 0

for all z. Hence, ([0 9)(f) # £ if d # 0. We see that “+d” is lost. We conclude
f o d #1id.

| Reminder: Inverse maps

We call a map f:V — W invertible if there is another map g : W — V' with
fog=idy and go f=idy

Since g uniquely determined, it is called the inverse map of f and denoted by f=1.

Recall that bijective and invertible are equivalent notions for maps.

However, here, we are only interested in linear maps between vector spaces. As mentioned
in Chapter 3, we have the following interesting result:

Proposition 8.11. Inverses are again linear.

If0:V — W is a linear map that is bijective, then its inverse £=* : W — V is also

linear
——

Example 8.12. Recall that we already considered a linear map in Section 7.4, namely
the map ®5 : v — v5, which maps a vector v from an F-vector space V to its coordinate
vector v® € F™ with respect to a basis B.

Clue bosis B

/7 / @_'E(l’d)= <

—1 —_
Q E z .Sh.riql:'y( l
."'lCI\l ]

i“jv (J‘"H. 1.

! Ao
- Carmonie f Lsis (.,

) boriadp > fu i

l’_
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| Remark: !

A linear map £ : V. — W exactly conserves the structure of the wvector spaces,
meaning vector addition and scalar multiplication. Therefore, mathematicians call
a linear map a homomorphism. A homomorphism ¢ that is invertible and has an
inverse (=1 that is also a homomorphism is called an isomorphism.

8.3 Finding the matrix for a linear map

8.3.1 Just know what happens to a basis

Rule of thumb: Linearity makes it easy

For a linear map, you only have to know what happens to a basis. The remaining
part of space “tags along”.

Let ¢ :V — W be a linear map and B = (by,...,b,) some basis of V. For each x € V|
we denote by ®5(x) € F" its coordinate vector, which means

aq a1
Op(x)=1| : | €eF* with x=a;b;+---+a,b, = @gl
Qp, 79

Then:

U(x) =Ll(anby + -+ -+ apby) = aql(by) + - - - + a,l(by,)

Equation (8.7) says everything: If you know the images of the all basis elements, which
means {(by),...,¢(b,), then you know all images ¢(x) for each x € V' immediately.

Example 8.13. Let V = P5(R) with the monomial basis B = (my, m;, my, m3) where
my,(z) = z*. For the differential operator & € L(P3(R), P2(R)) where 9 : f — f’, we have

d(mg) =0, J(m;)=mg, JI(my)=2m;, IJ(mz)=3msy, (8.7)

For an arbitrary p € P3(R), which means p(z) = az® + bx? + cx + d for a,b,c,d € R or
p = dmg + cm; + bmy + ams, we have

d
p° = and hence 9(p) = dd(myg)+cd(m;)+bd(mz)+ad(mz) = cmg+2bm; +3ams.

SO

S

Checking this: p’(z) = 3ax? + 2bz + ¢, hence d(p) = p’ = 3amy + 2bm; + cmy,.
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8.3.2 Matrix of a linear map with respect to bases

Let us consider again two arbitrary finite-dimensional F-vector spaces V' and W and linear
maps between them.

vector space V' vector space W
with basis B 14 with basis C

— \,.e(x)
\ [1A

/
() o b Loen,
— = A

/[
®

LA [ =
L

B
matrix Al in Soonr

g \}'y 0/- ﬁNAH
Dp(x) )

c(4(x)) i A

vector space [F™ vector space F™

d, - .
Question: \A———/ﬂ :FA- F—>F

How to get the map or the matrix in the bottom. How to send the coordinate vector
dp(x) to the coordinate vector ®c((x))?

\

Of course, this is given by composing the three maps:

Ce(l(x)) = (e o Lo 0y')(05(x))

(P o Lo @y')(e;) = De(U(P5' (e)))) = De((by))
This gives us a matrix that really represents the abstract linear map. It depends, of course,

on the chosen bases B and C in the vector spaces V and W, respectively. Therefore, we
choose a good name:

| Matrix representation of the linear map

For the linear map ¢ :'V — W, we define the matrix
leer = | Pc(l(br)) ... Bc(l(by)) | € Fm=» (8.8)

and call it the matrix representation of the linear map ¢ with respect to the basis B
and C.




