Proposition & Definition 7.39. Still the same about orthogonality:

- For $\mathbf{x}, \mathbf{y} \in V$ we write $\mathbf{x} \perp \mathbf{y}$ if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
- For $\mathbb{F} = \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V \setminus \{\mathbf{o}\}$ we define:

$$\operatorname{angle}(\mathbf{x}, \mathbf{y}) := \operatorname{arccos}\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}\right).$$

• For a nonempty set $M \subset V$ we call

 $M^{\perp} := \{ \mathbf{x} \in V : \mathbf{x} \perp \mathbf{m} \text{ for all } \mathbf{m} \in M \}$

the orthogonal complement of M. This is always a subspace of V. Instead of $\mathbf{x} \in M^{\perp}$, we often write $x \perp M$.

• For $\mathbf{x} \in V$ and a subspace U of V there is a unique decomposition

 $\mathbf{x} = \mathbf{p} + \mathbf{n} =: \mathbf{x}_{|U} + \mathbf{x}_{|U^{\perp}}$

into the <u>orthogonal projection</u> $\mathbf{p} =: \mathbf{x}_{|U} \in U$ and the <u>normal component</u> $\mathbf{n} = \mathbf{x}_{|U^{\perp}} \in U^{\perp}$ with respect to U. The calculation is given by

$$G(\mathcal{B}) \Phi_{\mathcal{B}}(\mathbf{p}) = \begin{pmatrix} \langle \mathbf{x}, \mathbf{b}_1 \rangle \\ \vdots \\ \langle \mathbf{x}, \mathbf{b}_n \rangle \end{pmatrix}$$
(7.21)

for any basis $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of U, and $\mathbf{n} = \mathbf{x} - \mathbf{p}$.

- A family $\mathcal{B} = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ with vectors from V is called:
 - Orthogonal system (OS) if $\mathbf{u}_i \perp \mathbf{u}_j$ for all i, j = 1, ..., n with $i \neq j$;
 - Orthonormal system (ONS) if, in addition, $\|\mathbf{u}_i\| = 1$ for all i = 1, ..., n;
 - Orthogonal basis (OB) if it an OS and a basis of V;
 - Orthonormal basis (ONB) if it an ONS and a basis of V.
- OS that do not own the zero vector **o** are always linearly independent.
- If $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is an OB of U, then the equation (7.21) is much simpler:

$$\Phi_{\mathcal{B}}(\mathbf{x}_{|U}) = \begin{pmatrix} \frac{\langle \mathbf{x}, \mathbf{b}_1 \rangle}{\|\mathbf{b}_1\|^2} \\ \vdots \\ \frac{\langle \mathbf{x}, \mathbf{b}_n \rangle}{\|\mathbf{b}_n\|^2} \end{pmatrix}, \quad i.e. \quad \mathbf{x}_{|U} = \frac{\langle \mathbf{x}, \mathbf{b}_1 \rangle}{\|\mathbf{b}_1\|^2} \mathbf{b}_1 + \ldots + \frac{\langle \mathbf{x}, \mathbf{b}_n \rangle}{\|\mathbf{b}_n\|^2} \mathbf{b}_n.$$
(7.22)

If \mathcal{B} is an ONB, then it gets also easier $\|\mathbf{b}_i\|^2$ (= 1).

Example 7.40. (a) The vectors $\mathbf{x} = \begin{pmatrix} 1 \\ i \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ from \mathbb{C}^2 are not orthogonal w.r.t. the standard inner product $\langle \cdot, \cdot \rangle_{\text{euclid}}$ since

 $\left\langle \begin{pmatrix} 1\\ i \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix} \right\rangle_{\text{euclid}} = 1 \cdot \overline{0} + \mathbf{i} \cdot \overline{1} = \mathbf{i} \neq 0.$

However, there are orthogonal w.r.t. the inner product given by $\langle \mathbf{x}, \mathbf{y} \rangle := \langle A\mathbf{x}, \mathbf{y} \rangle_{\text{euclid}}$ with $A = \begin{pmatrix} 2 & \mathbf{i} \\ -\mathbf{i} & \mathbf{j} \end{pmatrix}$, since

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} 2 & \mathbf{i} \\ -\mathbf{i} & 1 \end{pmatrix} \begin{pmatrix} 1 \\ \mathbf{i} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle_{\text{euclid}} = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\rangle_{\text{euclid}} = \mathbf{0}. \quad \mathbf{x}$$

The orthogonal projection of **x** onto $\underline{\text{Span}(\mathbf{y})}$ can be different for different inner products. W.r.t. $\langle \cdot, \cdot \rangle$ it is **o** (since $\mathbf{x} \perp \mathbf{y}$), but w.r.t. $\langle \cdot, \cdot \rangle_{\text{euclid}}$ it is

$$\mathbf{x}_{|\text{Span}(\mathbf{y})} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle_{\text{euclid}}}{\langle \mathbf{y}, \mathbf{y} \rangle_{\text{euclid}}} \mathbf{y} = \frac{\langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle_{\text{euclid}}}{\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle_{\text{euclid}}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{i}{1} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = i \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix}.$$

(b) Looking at the vector space $\mathcal{F}([0, 2\pi])$, which contains function $\mathbf{f} : [0, 2\pi] \to \mathbb{R}$, we define a subspace V that is spanned by the family $\mathcal{B} = (1, \cos, \sin)$. Then w.r.t the inner product defined by

$$\langle \mathbf{f}, \mathbf{g} \rangle := \int_0^1 \mathbf{f}(x) \mathbf{g}(x) \, dx \, ,$$

the family \mathcal{B} is an OS:

$$\langle 1, \cos \rangle = \int_{0}^{2\pi} A \cdot \cos x \, dx = 0, \qquad \langle 1, \sin \rangle = \int_{0}^{2\pi} A \cdot \sin x \, dx = 0, \qquad \text{and}$$

$$\langle \cos, \sin \rangle = \int_0^{2\pi} (\cos x) (\sin x) dx = \frac{1}{2} \sin^2 x \Big|_0^{2\pi} = \frac{\sin^2 2\pi - \sin^2 0}{2} = 0.$$
use of

Because of

$$\langle 1,1 \rangle = \int_{0}^{2\pi} 1 \, dx = 2\pi, \quad \langle \cos, \cos \rangle = \int_{0}^{2\pi} \cos^2 x \, dx = \pi, \quad \langle \sin, \sin \rangle = \int_{0}^{2\pi} \sin^2 x \, dx = \pi$$

the new family
$$\begin{pmatrix} 1 \\ \sqrt{2\pi}, \frac{\cos}{\sqrt{\pi}}, \frac{\sin}{\sqrt{\pi}} \end{pmatrix}$$
 is an ONB of V.
B \mathcal{F} by Renaber and so signal
b With OND, you can calculate $\mathfrak{T}_{\mathcal{B}}(\mathcal{F})$ casely
 $\mathcal{F} = \alpha_{1} \cdot b_{1} + \dots + \alpha_{n} \cdot b_{n} \implies \alpha_{i} = \langle \mathcal{F}_{i} \cdot b_{i} \rangle$

If you cancel the algorithm at some point, the family at this point, $\mathcal{B} = (\mathbf{w}_1, \ldots, \mathbf{w}_k)$, is a ONB of the Span $(\mathbf{w}_1, \ldots, \mathbf{w}_k)$.

Recall that for this ONB $\mathcal{B} = (\mathbf{w}_1, \dots, \mathbf{w}_k)$ the orthogonal projection $\mathbf{u}_{|\text{Span}(\mathcal{B})}$ is calculated by

$$\mathbf{u}_{|\mathrm{Span}(\mathcal{B})} = \langle \mathbf{u}, \mathbf{w}_1 \rangle \mathbf{w}_1 + \ldots + \langle \mathbf{u}, \mathbf{w}_k \rangle \mathbf{w}_k. \qquad (\boldsymbol{\vartheta}: [-\boldsymbol{1}, \boldsymbol{1}] \rightarrow [\boldsymbol{\theta}]$$

Example 7.41. The monomials $C = (\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2)$ do not form an ONB in $\mathcal{P}([-1, 1])$ w.r.t. $\langle \mathbf{f}, \mathbf{g} \rangle = \int_{-1}^{1} \mathbf{f}(x) \mathbf{g}(x) dx$. We can apply the Gram-Schmidt procedure for C. Here it is useful to start with the numbering indices 0, 1, 2, ...

 $\mathcal{B} = (\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2)$ is an ONB for Span(\mathcal{C}) = $\mathcal{P}_2([-1, 1])$. The polynomials $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2$ (or also with other normalisation factors) are called the <u>Legendre polynomials</u>. If we add the other monomials $\mathbf{m}_3, \mathbf{m}_4, ...,$ we get the next Legendre polynomials.

Summary

• Vectors are elements in a set, called a vector space V, that one can add together and scale with numbers α from \mathbb{R} or \mathbb{C} , without leaving the set V. The addition and scalar multiplication just have to satisfy the rules (1)–(8) from Definition 7.1.

- If you know that a set V with two operations + and α · is a vector space and if you want to show that also a subset U ≠ Ø of V form a vector space, then you do not have to check (1)–(8) again, but only (a) and (b) from Proposition 7.7. This is called a *subspace* of V.
- The definitions linear combination, span, generating system, linearly (in)dependent, basis and dimension are literally the same in Chapter 3.
- If you fix a basis $\mathcal{B} = (\mathbf{b}_1, \ldots, \mathbf{b}_n)$ in V, then each $\mathbf{x} \in V$ has a uniquely determined linear combination $\mathbf{x} = \alpha_1 \mathbf{b}_1 + \cdots + \alpha_n \mathbf{b}_n$. The numbers $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ (\mathbb{F} is either \mathbb{R} or \mathbb{C}) are called the *coordinates* of \mathbf{x} w.r.t. \mathcal{B} . This defines the vector $\Phi_{\mathcal{B}}(\mathbf{x}) \in \mathbb{F}^n$.
- Changing the basis of V from \mathcal{B} to \mathcal{C} also changes the coordinate vector from $\Phi_{cB}(\mathbf{x}) \in \mathbb{F}^n$ to $\Phi_{\mathcal{C}}(\mathbf{x}) \in \mathbb{F}^n$. This change can be describes by the *transformation matrix* $T_{\mathcal{C}\leftarrow\mathcal{B}}$.
- One always has $T_{\mathcal{B}\leftarrow \mathcal{C}} = T_{\mathcal{C}\leftarrow \mathcal{B}}^{-1}$. Sometimes, it is helpful to go a detour $T_{\mathcal{B}\leftarrow \mathcal{C}} = T_{\mathcal{B}\leftarrow \mathcal{A}}T_{\mathcal{A}\leftarrow \mathcal{C}}$ where \mathcal{A} is a simple and well-known basis.
- An *inner product* ⟨·, ·⟩ is a map, which takes two vectors x, y ∈ V and gives out a number ⟨x, y⟩ in F. It has to satisfy the rules (S1)–(S4) from Definition 7.23.
- If A ∈ F^{n×n} is selfadjoint and *positive definite*, then ⟨x, y⟩ := ⟨Ax, y⟩_{euclid} defines an inner product in Fⁿ. Here ⟨·, ·⟩_{euclid} is the well-known standard inner product in Rⁿ (Chapter 2) or Cⁿ (Chapter 6).
- A norm $\|\cdot\|$ is a map that sends a vector $\mathbf{x} \in V$ to number $\|\mathbf{x}\| \in \mathbb{R}$ and satisfy the rules (N1)–(N3) from Definition 7.33.
- An inner product $\langle \cdot, \cdot \rangle$ always defines a norm $\|\mathbf{x}\| := \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.
- By having an inner product, we can talk about orthogonal projection $\mathbf{x}_{|U}$ for a vector $\mathbf{x} \in V$ w.r.t. a subspace $U \subset V$.

Now in Chapter 8, with the power of general vector spaces, we also can consider general linear maps between arbitrary \mathbb{F} -vector spaces V and W.

Show to store this information in a matrix 2

8.1 Definition: Linear maps

Let \mathbb{F} be either \mathbb{R} or \mathbb{C} again. Let V and W be two \mathbb{F} -vector spaces. It is important that for both the same field \mathbb{F} is chosen.

Definition 8.1. Linear map $A \mod \ell : V \to W$ is called a linear map, linear function or linear operator if ℓ satisfies the two following properties. For all $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{F}$: $(L+) \quad \ell(\mathbf{x}+\mathbf{y}) = \ell(\mathbf{x}) + \ell(\mathbf{y}),$ (additive) $(L \cdot) \quad \ell(\alpha \mathbf{x}) = \alpha \ell(\mathbf{x}).$ (homogeneous) If $W = \mathbb{F}$, one often calls ℓ a linear functional.

We know from the definition of the determinant that ℓ is linear. Using Laplace's formula, we can rewrite ℓ :

$$\ell(\mathbf{x}) = x_1 \det \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} - x_2 \det \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} + x_3 \det \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = \underbrace{(-2 \ 5 \ 1)}_{A} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

(e) The map $\ell : \mathbb{F}^2 \to \mathbb{F}^2$ defined by $\binom{x_1}{x_2} \mapsto \binom{4x_1+3x_2}{x_2+7}$ is not linear because $\ell(\mathbf{o}) = \binom{0}{7} \neq \mathbf{o}$.

(f) For $A \in \mathbb{F}^{m \times n}$ define $f_A : \mathbb{F}^n \to \mathbb{F}^m$ by $f_A : \mathbf{x} \mapsto A\mathbf{x}$. This is a linear map by Proposition 3.14. For example, $\mathbb{F} = \mathbb{R}$ and m = n = 2, look at how f_A acts on houses.

The last example (f) includes all the other examples (a)–(e): We always find a corresponding matrix $\ell(\mathbf{x}) = A\mathbf{x}$.

$$A = \begin{pmatrix} | & | \\ l(e_n) & \cdots & l(e_n) \\ | & | \end{pmatrix} \quad \text{for } l: \mathbb{F}^n \to \mathbb{F}^m$$

$$l = f_A$$
How does this work for $l: V \to W^2$

Now let us look for some abstract vector spaces:

Example 8.4. (a) Let $V = \mathcal{F}(\mathbb{R})$, $W = \mathbb{R}$ and $\delta_0 : V \to W$ the evaluation for a function $\mathbf{f} \in V$ in the origin 0, which means $\delta_0 : \mathbf{f} \mapsto \mathbf{f}(0)$. Then δ_0 is linear. (Show it!)

Another example would be a evaluation at different points and using linear combinations: $\ell : \mathbf{f} \mapsto \underline{3}\mathbf{f}(0) - 7\mathbf{f}(\frac{1}{4}) + 5\mathbf{f}(1).$

(b) Let ∂ be the differential operator from $V = \mathcal{P}_3(\mathbb{R})$ to $W = \mathcal{P}_2(\mathbb{R})$, which means ∂ sends a polynomial $\mathbf{f} \in \mathcal{P}_3(\mathbb{R})$ to its derivative $\mathbf{f}' \in \mathcal{P}_2(\mathbb{R})$.

(c) In the same manner, we can look at the map $\mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_1(\mathbb{R})$ with $\mathbf{f} \mapsto \mathbf{f}''$ given by the second derivative. In the same way, a combination is possible, $\mathbf{f} \mapsto \mathbf{f}'' + 3\mathbf{f}'' - 2\mathbf{f}' + 4\mathbf{f}$

econd designifive

as a map $\mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$.

(d) Instead of using the derivative of a polynomial $\mathbf{f} \in \mathcal{P}([a, b]) =: V$ or evaluating it in one point, we can use the integration, hence the map $i : \mathbf{f} \mapsto \int_a^b \mathbf{f}(x) dx$. Therefore, in this case, we have $V = \mathcal{P}([a, b])$ and $W = \mathbb{R}$. Again, we get a linear map:

$$\int_{a}^{b} \left(\mathbf{f}(x) + \mathbf{g}(x) \right) dx = \int_{a}^{b} \mathbf{f}(x) \, dx + \int_{a}^{b} \mathbf{g}(x) \, dx \quad \text{and} \quad \int_{a}^{b} \alpha \mathbf{f}(x) \, dx = \alpha \int_{a}^{b} \mathbf{f}(x) \, dx.$$

(We also talk about the integration in mathematical analysis next semester.)

 \rightarrow For δ_0 , ∂_1 , $\dot{\iota}$, we will find also matrices to shore the information! ns of linear maps [Need: $\Phi_B: V \rightarrow F^h$]

8.2 Combinations of linear maps

8.2.1 Sum and multiples of a linear map

Definition 8.5. Sum and scaled linear maps Let V and W be two \mathbb{F} -vector space (with same \mathbb{F} !) and let $k : V \to W$ and $\ell: V \to W$ be linear maps. Then we define $k+\ell: V \to W$ by $(k+\ell)(\mathbf{x}) := k(\mathbf{x}) + \ell(\mathbf{x}) \quad \text{for all} \quad \mathbf{x} \in V,$ and for $\alpha \in \mathbb{F}$, we define $\alpha \cdot \ell$ by $\mathbf{x} \in V$ for all $\mathbf{x} \in V$. $(\alpha \cdot \ell)(\mathbf{x}) := \alpha \cdot \ell(\mathbf{x})$

The operations + and $\alpha \cdot$ on the right-hand side are the operations in W.

Proposition & Definition 8.6. Vector space of linear maps $V \rightarrow W$

The maps $k+\ell$ and $\alpha \cdot \ell$ from Definition 8.5 are again linear maps from V to W. The set of all linear maps from V to W equipped with the two operations + and $\alpha \cdot$ form again an \mathbb{F} -vector space. We denote this vector space by $\mathcal{L}(V, W)$.

The zero vector in $\mathcal{L}(V, W)$ is the zero map $o: V \to W$ defined by $o(\mathbf{x}) = \mathbf{o}$ for all $\mathbf{x} \in V$.

Proof. Let $k, \ell : V \to W$ be linear and let $\mathbf{x}, \mathbf{y} \in V$ and $\alpha \in \mathbb{F}$. Then:

$$(k+\ell)(\mathbf{x} \oplus \mathbf{y}) \stackrel{Def. 8.5}{=} k(\mathbf{x}+\mathbf{y}) + \ell(\mathbf{x}+\mathbf{y}) \stackrel{(L+)}{=} k(\mathbf{x}) + k(\mathbf{y}) + \ell(\mathbf{x}) + \ell(\mathbf{y})$$
$$= k(\mathbf{x}) + \ell(\mathbf{x}) + k(\mathbf{y}) + \ell(\mathbf{y}) \stackrel{Def. 8.5}{=} (k+\ell)(\mathbf{x} + k+\ell)(\mathbf{y})$$
and
$$(k+\ell)(\alpha \mathbf{x}) \stackrel{Def. 8.5}{=} k(\alpha \mathbf{x}) + \ell(\alpha \mathbf{x}) \stackrel{(L\cdot)}{=} \alpha k(\mathbf{x}) + \alpha \ell(\mathbf{x}) = \alpha (k(\mathbf{x}) + \ell(\mathbf{x}))$$
$$\stackrel{Def. 8.5}{=} \alpha (k+\ell)(\mathbf{x}),$$

which means $k + \ell$ has two properties (L+) and $(L\cdot)$ and is also linear. In the same manner, we see that $\alpha \cdot \ell$ is linear. Show $(\Lambda) - (B)$ as an exercise.

From now on, we do not write the two operations + and $\alpha \cdot$ in $\mathcal{L}(V, W)$ in red anymore. However, keep in mind that these are different operations than + and $\alpha \cdot$ in W.

Example 8.7. – **Projection and reflection.** Let $\mathbf{n} \in \mathbb{R}^n$ be a vector $||\mathbf{n}|| = 1$ and $G := \text{Span}(\mathbf{n})$ the spanned line. For all $\mathbf{x} \in \mathbb{R}^n$, we can calculate the orthogonal projection

$$\mathbf{x}_{|G} = \frac{\langle \mathbf{x}, \mathbf{n} \rangle_{\text{euclid}}}{\langle \mathbf{n}, \mathbf{n} \rangle_{\text{euclid}}} \mathbf{n} = \langle \mathbf{x}, \mathbf{n} \rangle_{\text{euclid}} \mathbf{n} = \mathbf{n} \langle \mathbf{x}, \mathbf{n} \rangle_{\text{euclid}} = \mathbf{n} (\mathbf{n}^{\top} \mathbf{x}) = (\mathbf{n} \mathbf{n}^{\top}) \mathbf{x}$$

Hence the map

$$\operatorname{proj}_G : \mathbb{R}^n \to \mathbb{R}^n \quad with \quad \operatorname{proj}_G(\mathbf{x}) := \mathbf{x}_{|_G} = (\mathbf{nn}^\top)\mathbf{x},$$
 (8.1)

defines a linear map $\mathbb{R}^n \to \mathbb{R}^n$. We also know that is given by the associated matrix: $\operatorname{proj}_G = f_{\mathbf{nn}^{\top}}$. Using the orthogonal decomposition

$$\mathbf{x} = \mathbf{x}_{|G} + \mathbf{x}_{|E},$$

we also can also define the linear map

$$\operatorname{proj}_E : \mathbb{R}^n \to \mathbb{R}^n$$

which is the orthogonal projection onto $E := G^{\perp} = \{\mathbf{n}\}^{\perp}$:

$$\operatorname{proj}_{E}(\mathbf{x}) := \mathbf{x}_{|E|} = \mathbf{x} - \mathbf{x}_{|G|}.$$

Subtracting the orthogonal projection $\mathbf{x}_{|G}$ again, we get the reflection of \mathbf{x} with respect to the hyperplane E.

Hence, we define:

$$\operatorname{refl}_E : \mathbb{R}^n \to \mathbb{R}^n$$
 with $\operatorname{refl}_E(\mathbf{x}) := \mathbf{x}_{|E} - \mathbf{x}_{|G} = \mathbf{x} - 2\mathbf{x}_{|G}$.

In other words:

$$\operatorname{proj}_E = id - \operatorname{proj}_G$$
 and $\operatorname{refl}_E = id - 2\operatorname{proj}_G$. (8.2)

Here, $id : \mathbb{R}^n \to \mathbb{R}^n$ is the identity map $id : \mathbf{x} \mapsto \mathbf{x}$. By these formulas, we can conclude, $\operatorname{proj}_E, \operatorname{refl}_E \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n).$ (id = \mathfrak{f}_{AL})

8.2.2 Composition and inverses

Recall that you can form the composition of two maps $\ell: U \to V$ and $k: V \to W$ by setting:

$$(k \circ \ell)(\mathbf{x}) = k(\ell(\mathbf{x})) \quad \text{for all} \quad \mathbf{x} \in U.$$
 (8.3)

Proposition 8.8. Composition of linear maps is linear.

Let U, V, W be F-vector spaces and let $\ell : U \to V$ and $k : V \to W$ be linear maps. Then, the composition $k \circ \ell : U \to W$ is also linear. In short:

$$\ell \in \mathcal{L}(U, V), \ k \in \mathcal{L}(V, W) \Rightarrow k \circ \ell \in \mathcal{L}(U, W).$$

Let compose the maps from Example 8.7:

Important:
$$k_0(l_A+l_2) = (k_0l_A) + (k_0l_2)$$
 Exercise!
 $(k_A+k_2) \circ l = (k_1 \circ l) + (k_2 \circ l)$

Example 8.9. Recall both projections

$$\operatorname{proj}_G : \mathbf{x} \mapsto \mathbf{nn}^\top \mathbf{x}$$
 and $\operatorname{proj}_E = id - \operatorname{proj}_G$

and the reflection

$$\operatorname{refl}_E = id - 2\operatorname{proj}_G$$

All three maps act between $\mathbb{R}^n \to \mathbb{R}^n$ and can be composed in all possible ways.

We already know that projecting more than once does not change anything:

$$\operatorname{proj}_{G} \circ \operatorname{proj}_{G} = \operatorname{proj}_{G}$$
 and $\operatorname{proj}_{E} \circ \operatorname{proj}_{E} = \operatorname{proj}_{E}$. (8.4)

For the reflection, we expect that using it two times brings us back to the beginning, which means that we should get the identity map:

$$\operatorname{refl}_{E} \circ \operatorname{refl}_{E} = (id - 2\operatorname{proj}_{G}) \circ (id - 2\operatorname{proj}_{G})$$
$$= \underbrace{id \circ id}_{id} - \underbrace{id \circ 2\operatorname{proj}_{G}}_{2\operatorname{proj}_{G}} - \underbrace{2\operatorname{proj}_{G} \circ id}_{2\operatorname{proj}_{G}} + \underbrace{2\operatorname{proj}_{G} \circ 2\operatorname{proj}_{G}}_{4\operatorname{proj}_{G}} = id.$$

Composition of both projections gives us the zero map:

$$\operatorname{proj}_{G} \circ \operatorname{proj}_{E} = \operatorname{proj}_{G} \circ (id - \operatorname{proj}_{G}) = \underbrace{\operatorname{proj}_{G} \circ id}_{\operatorname{proj}_{G}} - \underbrace{\operatorname{proj}_{G} \circ \operatorname{proj}_{G}}_{\operatorname{proj}_{G}} = o.$$
(8.5)

In the same way, $\operatorname{proj}_E \circ \operatorname{proj}_G = o$. We also can calculate:

 $\operatorname{refl}_E \circ \operatorname{proj}_G = -\operatorname{proj}_G$ and $\operatorname{refl}_E \circ \operatorname{proj}_E = \operatorname{proj}_E$. (8.6)

Changing the order gives us the same result.

We again look at more abstract examples:

Example 8.10. (a) Let $\delta_0 : \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$ given by $\delta_0 : \mathbf{f} \mapsto \mathbf{f}(0)$ the point evaluation and $\partial: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ the differential operator $\partial: \mathbf{f} \mapsto \mathbf{f}'$ from Example 8.4 (a) and (b). Then, the composition $\delta_0 \circ \partial$ from $\mathcal{P}_3(\mathbb{R})$ to \mathbb{R} is given by $\underline{\mathcal{P}_{3}(\mathbb{R})} \xrightarrow{\sim} \mathcal{P}_{2}(\mathbb{R}) \delta_0 \circ \partial : \mathbf{f} \mapsto \mathbf{f}'(0)$

$$\mathbf{f} \stackrel{o}{\mapsto} \mathbf{f}' \stackrel{o}{\mapsto} \mathbf{f}'(0), \quad \text{hence}$$

The reverse composition $\partial \circ \delta_0$ is not defined!

(b) Let $\partial : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ be the differentiation $\mathbf{f} \mapsto \mathbf{f}'$ and, in addition, $\int : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ the map that sends $\mathbf{f} \in \mathcal{P}_2(\mathbb{R})$ to the function \mathbf{F} with

$$\mathbf{F}(x) = \int_0^x \mathbf{f}(t) \, dt \qquad \text{for all} \quad x \in [0, 1] \, .$$

We get:

 $\mathbf{f} \stackrel{\int}{\mapsto} \mathbf{F} \stackrel{\partial}{\mapsto} \mathbf{F}' = \mathbf{f}, \text{ hence } \partial \circ \int : \mathbf{f} \mapsto \mathbf{f}, \text{ which means } \partial \circ \int = id : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R}).$

We can also build the converse composition of ∂ and \int . Is $\int \circ \partial$ then the identity map $id : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$?

Let $\mathbf{f} \in \mathcal{P}_3(\mathbb{R})$ be arbitrary, which means $\mathbf{f}(x) = ax^3 + bx^2 + cx + d$ with some $a, b, c, d \in \mathbb{R}$. Then $\partial(\mathbf{f}) = \mathbf{f}'$ with $\mathbf{f}'(x) = 3ax^2 + 2bx + c$. Now, we use \int : The function $\mathbf{g} := (\int \circ \partial)(\mathbf{f}) = \int (\partial(\mathbf{f})) = \int (f')$ satisfies:

$$\mathbf{g}(x) = \int_0^x \mathbf{f}'(t) \, dt = \int_0^x \left(3at^2 + 2bt + c\right) dt = at^3 + bt^2 + ct \Big|_0^x = ax^3 + bx^2 + cx$$

for all x. Hence, $(\int \circ \partial)(\mathbf{f}) \neq \mathbf{f}$ if $d \neq 0$. We see that "+d" is lost. We conclude $\int \circ \partial \neq id$.

Reminder: Inverse maps

We call a map
$$f: V \to W$$
 invertible if there is another map $g: W \to V$ with
 $f \circ g = id_W$ and $g \circ f = id_V$
Since g uniquely determined, it is called the inverse map of f and denoted by f^{-1} .

Recall that *bijective* and *invertible* are equivalent notions for maps.

However, here, we are only interested in linear maps between vector spaces. As mentioned in Chapter 3, we have the following interesting result:

Proposition 8.11. Inverses are again linear.

If $\ell: V \to W$ is a linear map that is bijective, then its inverse $\ell^{-1}: W \to V$ is also linear

Example 8.12. Recall that we already considered a linear map in Section 7.4, namely the map $\Phi_{\mathcal{B}} : \mathbf{v} \mapsto \mathbf{v}^{\mathcal{B}}$, which maps a vector \mathbf{v} from an \mathbb{F} -vector space V to its coordinate vector $\mathbf{v}^{\mathcal{B}} \in \mathbb{F}^n$ with respect to a basis \mathcal{B} .

Remark:

A linear map $\ell: V \to W$ exactly conserves the structure of the vector spaces, meaning vector addition and scalar multiplication. Therefore, mathematicians call a linear map a homomorphism. A homomorphism ℓ that is invertible and has an inverse ℓ^{-1} that is also a homomorphism is called an isomorphism.

8.3 Finding the matrix for a linear map

8.3.1 Just know what happens to a basis

Rule of thumb: Linearity makes it easy

For a linear map, you only have to know what happens to a basis. The remaining part of space "tags along".

Let $\ell: V \to W$ be a linear map and $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ some basis of V. For each $\mathbf{x} \in V$, we denote by $\Phi_{\mathcal{B}}(\mathbf{x}) \in \mathbb{F}^n$ its coordinate vector, which means

$$\Phi_{\mathcal{B}}(\mathbf{x}) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{F}^n \quad \text{with} \quad \mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n = \Phi_{\mathcal{B}}^{-1} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \,.$$

Then:

$$\ell(\mathbf{x}) = \ell(\alpha_1 \mathbf{b}_1 + \dots + \alpha_n \mathbf{b}_n) = \alpha_1 \ell(\mathbf{b}_1) + \dots + \alpha_n \ell(\mathbf{b}_n)$$

Equation (8.7) says everything: If you know the images of the all basis elements, which means $\ell(\mathbf{b}_1), \ldots, \ell(\mathbf{b}_n)$, then you know all images $\ell(\mathbf{x})$ for each $\mathbf{x} \in V$ immediately.

Example 8.13. Let $V = \mathcal{P}_3(\mathbb{R})$ with the monomial basis $\mathcal{B} = (\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3)$ where $\mathbf{m}_k(x) = x^k$. For the differential operator $\partial \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ where $\partial : \mathbf{f} \mapsto \mathbf{f}'$, we have

$$\partial(\mathbf{m}_0) = \mathbf{o}, \quad \partial(\mathbf{m}_1) = \mathbf{m}_0, \quad \partial(\mathbf{m}_2) = 2\mathbf{m}_1, \quad \partial(\mathbf{m}_3) = 3\mathbf{m}_2,$$
(8.7)

For an arbitrary $\mathbf{p} \in \mathcal{P}_3(\mathbb{R})$, which means $\mathbf{p}(x) = ax^3 + bx^2 + cx + d$ for $a, b, c, d \in \mathbb{R}$ or $\mathbf{p} = d\mathbf{m}_0 + c\mathbf{m}_1 + b\mathbf{m}_2 + a\mathbf{m}_3$, we have

$$\mathbf{p}^{\mathcal{B}} = \begin{pmatrix} d \\ c \\ b \\ a \end{pmatrix} \text{ and hence } \partial(\mathbf{p}) = d\partial(\mathbf{m}_0) + c\partial(\mathbf{m}_1) + b\partial(\mathbf{m}_2) + a\partial(\mathbf{m}_3) = c\mathbf{m}_0 + 2b\mathbf{m}_1 + 3a\mathbf{m}_2.$$

Checking this: $\mathbf{p}'(x) = 3ax^2 + 2bx + c$, hence $\partial(\mathbf{p}) = \mathbf{p}' = 3a\mathbf{m}_2 + 2b\mathbf{m}_1 + c\mathbf{m}_0$.

8.3.2 Matrix of a linear map with respect to bases

Let us consider again two arbitrary finite-dimensional $\mathbb F\text{-vector spaces}\,V$ and W and linear maps between them.

Of course, this is given by composing the three maps:

 $\Phi_{\mathcal{C}}(\ell(\mathbf{x})) = (\Phi_{\mathcal{C}} \circ \ell \circ \Phi_{\mathcal{B}}^{-1})(\Phi_{\mathcal{B}}(\mathbf{x}))$

$$(\Phi_{\mathcal{C}} \circ \ell \circ \Phi_{\mathcal{B}}^{-1})(\mathbf{e}_j) = \Phi_{\mathcal{C}}(\ell(\Phi_{\mathcal{B}}^{-1}(\mathbf{e}_j))) = \Phi_{\mathcal{C}}(\ell(\mathbf{b}_j))$$

This gives us a matrix that really represents the abstract linear map. It depends, of course, on the chosen bases \mathcal{B} and \mathcal{C} in the vector spaces V and W, respectively. Therefore, we choose a good name:

$\begin{array}{l} \text{Matrix representation of the linear map} \\ For the linear map <math>\ell: V \to W, \text{ we define the matrix} \\ \ell_{\mathcal{C} \leftarrow \mathcal{B}} := \left(\Phi_{\mathcal{C}}(\ell(\mathbf{b}_{1})) \dots \Phi_{\mathcal{C}}(\ell(\mathbf{b}_{n})) \right) \in \mathbb{F}^{m \times n} \\ \text{(8.8)} \end{array}$

and call it the matrix representation of the linear map ℓ with respect to the basis \mathcal{B} and \mathcal{C} .