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Question: Can we do a similar thing in the polynomial space? Consider bases B and C
that is not the simple monomial basis:

B = (2m2 − 1m1� �� �
=:b1

, −8m1 − 2m0� �� �
=:b2

, 1m2 + 4m1 + 1m0� �� �
=:b3

)

and C = (1m1 + 1m0� �� �
=: c1

, 2m2 + 2m1� �� �
=: c2

, 1m2 + 1m0� �� �
=: c3

) .

Answer: Yes, we can do the same by adding the the monomial basis (or a other
well-known basis) in the middle. We call the monomial basis by A, which means A =
(m2, m1, m0). Then TA←B and TA←C are immediately given:

TA←B =




2 0 1
−1 −8 4
0 −2 1


 and TA←C =



0 2 1
1 2 0
1 0 1


 ,

and then we get TB←C:

TB←C by using an additional “nice” basis A

TA←C = TA←B TB←C

ΦA(x)
TA←B�−→ ΦB(x)

TB←C�−→ ΦC(x)
and hence TB←C = (TA←B)

−1 TA←C.

Since we again have to find an inverse of a matrix, we can use the Gauß-Jordan algorithm
again:

(TA←B | TA←C) � (1 | TB←C). (7.12)

For our example, this gives us:



2 0 1 0 2 1
−1 −8 4 1 2 0
0 −2 1 1 0 1


 �




1 0 0 3 −2 4
0 1 0 −7/2 3 −4
0 0 1 −6 6 −7


 .

The boxed matrix is indeed TB←C.
VL19
↓
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Change of basis for audio: WAV vs. MP3

Assume you have an audio signal f given at
finite time steps t = 1, 2, ..., 50 (e.g. milli-
seconds). Hence, you have some measure val-
ues f1, f2, . . . , f50 ∈ R.

f = 123 50

b1:
1

1

b2:
2

1

...b50:
50

1

At this point you know that the audio sig-
nal f is a vector in a 50-dimensional space,
which can be represented with respect to the
canonical basis B = (b1, . . . ,b50) of R50.
The coordinates of f are exactly the values
f1, f2, . . . , f50. For describing tones (so os-
cillations) this basis is not optimal!

We want to change to a basis C of R50, which is better fitting for tones.

Sine waves Cosine waves

c25:
no oscillation

123 50

c1:
1 oscillation

123 50

c26:
1 oscillation

123 50

c2:
2 oscillations

123 50

c27:
2 oscillations

123 50

c3:
3 oscillations

123 50

c28:
3 oscillations

123 50

...
...

c24:
24 oscillations

123 50

c49:
24 oscillations

123 50

c50:
25 oscillations

123 50
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One can show: C = (c1, . . . , c50) is also linearly independent and hence a basis of
R50.

f = 123 50

The signal f from above has the following form:

f = c3 − c25 + 3c26 +
1
4
c40.

We reckon that most signals f are a superposition of some “basic tones” ci.

Compression: One stores only the coordinates in ΦC(f). One can also focus on
the (for humans) important frequencies and ignore the higher and lower ones (e.g.
MP3 file format). All this saves storage space instead of storing the coordin-
ates ΦB(f) = (f1, . . . , f50)

T (e.g. WAV file format). Similar ideas exist for two-
dimensional signals like pictures: ⇒ BMP vs. JPG.

Information: The change of basis from B to C is important for a lot of applications
and known as the Fourier transform. We will consider it in more detail in the
analysis lecture.

7.5 General vector space with inner product and
norms

Recall that in the vector spaces Rn and Cn, besides the algebraic structure given by

vector addition + and the scalar multiplication ·,

we also defined a geometric structure by choosing

an inner product �·, ·� and also a norm � · �

for measuring angles and lengths.

Attention! Convention for F=R and F=C
Since we handle the cases F = R and F = C simultaneously, we also use the notion
of the complex conjugation in the real case. Hence, for α ∈ F we write:

α :=

�
α if F = R,
α if F = C (complex conjugate number).

Analogously, for a matrix A ∈ Fm×n with m,n ∈ N:

A∗ :=

�
AT if F = R (transpose),
A∗ if F = C (adjoint).
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7.5.1 Inner products

Let F ∈ {R,C} and V be an F-vector space.

Definition 7.23. Inner product

A map �·, ·� : V × V → F is called an inner product for V if it fulfils: For all
x,x�,y ∈ V and α ∈ F:

(S1) �x,x� > 0 for all x �= o, (positive definite)
(S2) �x+ x�,y� = �x,y�+�x�,y�, (additive)

(S3) �αx,y� = α�x,y�, (homogeneous)

�
(linear)

(S4) �x,y� = �y,x�. ((conj.) symmetric)

A vector space with an inner product is often called a pre-Hilbert space.

Recall all the properties we could derive from these four rules. For example:

�x,αy� = α�x,y� for all α ∈ F, x,y ∈ V.

The proof goes like: �x,αy� (S4)
= �αy,x� (S3)

= α�y,x� = α�y,x� (S4)
= α�x,y�.

Example 7.24. (a) Let V = Fn.

Standard inner product Fn

�x,y� =
�


x1...
xn


 ,



y1...
yn



�

= x1y1 + . . .+ xnyn = (y1 · · · yn)



x1...
xn


 (7.13)

= y∗x =: �x,y�euclid, x,y ∈ Fn

Again, the standard inner product is the most important one in Rn and Cn. Since it
describes the usual euclidean geometry, we denote it by �x,y�euclid in both cases.

(b) For V = F2 and x =
�
x1

x2

�
, y =

�
y1
y2

�
∈ F2 we define an inner product by

�x,y� = �
�
x1

x2

�
,
�
y1
y2

�
� := x1y1 + x1y2 + x2y1 + 4x2y2.

(c) For V = F2 and x =
�
x1

x2

�
, y =

�
y1
y2

�
∈ F2, we could also define

�x,y� = �
�
x1

x2

�
,
�
y1
y2

�
� := x1y2 + x2y1.

This is symmetric and linear in the first argument but not positive definite. For
example, x =

�
1
−1

�
gives us �x,x� = �

�
1
−1

�
,
�

1
−1

�
� = −2.

(d) Let V = P([0, 1],F) be the F-vector space of all polynomial functions f : [0, 1] → F.
Then, we define for f ,g ∈ V the inner product:

�f ,g� :=
� 1

0

f(x)g(x) dx
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You should see the analogy to �x,y�euclid in Fn. All data is now continuously distrib-
uted over [0, 1], and we need an integral instead of a sum. Often, we are in the case
F = R and can ignore the complex conjugation g(x).

Recall that for a general inner product on Rn, there is a uniquely determined positive
matrix A such that:

�x,y� = �Ax,y�euclid (7.14)

for all x,y ∈ Rn.

Definition 7.25. Positive definite matrix

A matrix A ∈ Fn×n is called positive definite if it is selfadjoint (A∗ = A) and
satisfies

�Ax,x�euclid > 0, i.e. x∗Ax > 0 (7.15)

for all x ∈ Fn \ {o}.

Attention! Positive definite needs selfadjointness

By our definition a positive definite matrix is always selfadjoint. In the complex
case this follows from equation (7.15). However, in the real case, you cannot drop
this assumption. Moreover, �Ax,x�euclid is always real, even in the case F = C,

�Ax,x�euclid = �x, A∗x�euclid
A=A∗
= �x, Ax�euclid = �Ax,x�euclid.

Some authors might be using only equation (7.15) for defining positive definite
matrices in the real case. Therefore to play it safe, we often talk about matrices
that are “selfadjoint and positive definite”.

Proposition 7.26. Positive definite matrix A ⇒ �Ax,y�euclid inner product

If A ∈ Fn×n is selfadjoint and positive definite, then

�x,y� := �Ax,y�euclid, x,y ∈ Fn

defines an inner product in Fn.

Example 7.27. Let us look at the examples from before:
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(a) The identity matrix 1 is positive definite since �1x,x�euclid = �x,x�euclid > 0 for all
x �= o.

(b) The matrix A =
�
1 1
1 4

�
∈ R2×2 is positive definite since for all x =

�
x1

x2

�
∈ R2 we have

��1 1
1 4

��
x1

x2

�
,

�
x1

x2

��
euclid

= x1x1 + x2x1 + x1x2 + 4x2x2 = (x1 + x2)
2 + 3(x2)

2 ≥ 0.

This can be only 0 if x1 = −x2 and x2 = 0, hence only for x = o.

(c) The matrix A =
�
0 1
1 0

�
is selfadjoint but not positive definite. For example, for x =

�
1
−1

�

the value �Ax,x�euclid is negative.

Proposition 7.28. 4 recognition features for a positive definite matrix

Let A = (aij) ∈ Fn×n be a selfadjoint matrix. Then the following claims are
equivalent:

(i) A is positive definite.
(ii) All eigenvalues A are positive.
(iii) After using Gaussian elimination only with the matrices Zi−λj, all pivots are

positive.
(iv) The determinants of the so-called leading principal minors of A, which means

det(H1), . . . , det(Hn), are positive.

Here

H1 = (a11), H2 =

�
a11 a12
a21 a22

�
, H3 =



a11 a12 a13
a21 a22 a23
a31 a32 a33


 , . . . , Hn = A.

Example 7.29. Let us check the proposition for the matrix A =
�
1 1
1 4

�
. It is positive

definite by Example 7.27 (b). The eigenvalues of A are given by solving

0 = det(A− λ1) = (1− λ)(4− λ)− 1 = λ2 − 5λ+ 3, so λ1,2 =
5
2
±
��

5
2

�2 − 3.

Both eigenvalues, λ1 and λ2, are positive. The Gaussian elimination gives us:

A =

�
1 1
1 4

�
�

�
1 1

0 3

�
.

Both pivots, 1 and 3 , are positive. At last the minors:

det(H1) = det(1) = 1 > 0 and det(H2) = det

�
1 1
1 4

�
= 3 > 0.
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Proposition 7.30. Inner products are related to pos. definite matrices

Let V be an F-vector space with inner product �·, ·� and dim(V ) = n. Let B be a
basis of V . Then for all x,y ∈ V we have

�x,y� = �AΦB(x),ΦB(y)�euclid,

where �·, ·�euclid is the standard inner product in Fn and

A = G(B) =



�b1,b1� · · · �bn,b1�

...
...

�b1,bn� · · · �bn,bn�




is the Gramian matrix w.r.t. B.

Example 7.31. Look at the R-vector space P2([0, 1]) of all real polynomial functions
f : [0, 1] → R with degree ≤ 2. The integral

�p,q� :=

� 1

0

p(x)q(x) dx, p,q ∈ P2

defines an inner product. Let us check how to use Proposition 7.30 in this case. Choose
a basis B of P2, for example the monomial basis B = (m0,m1,m2), and calculate the
associated Gramian matrix:

�mi,mj� =
� 1

0

xixjdx =

� 1

0

xi+jdx =
xi+j+1

i+ j + 1

���
1

0
=

1i+j+1 − 0i+j+1

i+ j + 1
=

1

i+ j + 1
(7.16)

and

G(B) =



�m0,m0� �m1,m0� �m2,m0�
�m0,m1� �m1,m1� �m2,m1�
�m0,m2� �m1,m2� �m2,m2�


 (7.16)

=




1
0+0+1

1
1+0+1

1
2+0+1

1
0+1+1

1
1+1+1

1
2+1+1

1
0+2+1

1
1+2+1

1
2+2+1


 =




1/1
1/2

1/3
1/2

1/3
1/4

1/3
1/4

1/5


 .

Then, by Proposition 7.30: For all a, b, c, d, e, f ∈ R, we get:

�am0 + bm1 + cm2 , dm0 + em1 + fm2� =
�



1/1
1/2

1/3
1/2

1/3
1/4

1/3
1/4

1/5






a
b
c


 ,



d
e
f



�

euclid

= ad+ 1
2
(ae+ bd) + 1

3
(af + be+ cd) + 1

4
(bf + ce) + 1

5
cf.

Let’s check this:

�am0 + bm1 + cm2 , dm0 + em1 + fm2� =
� 1

0

(a+ bx+ cx2)(d+ ex+ fx2) dx

=

� 1

0

�
ad+ (ae+ bd)x+ (af + be+ cd)x2 + (bf + ce)x3 + cfx4

�
dx

= ad

� 1

0

dx+ (ae+ bd)

� 1

0

x dx+ (af + be+ cd)

� 1

0

x2dx+ (bf + ce)

� 1

0

x3dx+ cf

� 1

0

x4dx

(7.16)
= ad+ 1

2
(ae+ bd) + 1

3
(af + be+ cd) + 1

4
(bf + ce) + 1

5
cf.
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Corollary 7.32. Gramian matrix is positive definite.

For a basis B of a vector space V with inner product �·, ·�, the Gramian matrix G(B)
is selfadjoint and positive definite.

Proof. G(B) = G(B)∗ follows from �bi,bj� = �bj,bi�. Using Proposition 7.30, we know
�G(B)ΦB(x),ΦB(x)�euclid = �x,x� > 0 for all x ∈ V \ {o} and hence also for all vectors
ΦB(x) ∈ Fn \ {o}.

7.5.2 Norms

As always, let F ∈ {R,C} and V be an F-vector space. Even in the case V not having an
inner product, we can talk about the length of vectors if we define a length measure:

Definition 7.33. Norm
A map � · � : V → R with the following properties is called a norm on V . For all
x,y ∈ V and α ∈ F, we have:

(N1) �x� ≥ 0, and �x� = 0 ⇔ x = o, (positive definite)

(N2) �αx� = |α| �x�, (absolutely homogeneous)

(N3) �x+ y� ≤ �x�+ �y� (triangle inequality).

An F-vector space with such a norm is called a normed space.

Example 7.34. (a) We already know that the euclidean norm for Fn, given by

�x� =
���



x1...
xn



��� =

�
|x1|2 + · · ·+ |xn|2, x ∈ Fn, (7.17)

satifies (N1-3) from Definition 7.33.

(b) In equation (7.17), you see squares and a square root that cancel themselves in some
sense. This would also work for cubes and the third root. Or even in general:

The p-norm

For each real number p ≥ 1, we set:

�x�p =
���



x1...
xn



���
p
:= p

�
|x1|p + · · ·+ |xn|p, x ∈ Fn. (7.18)

This defines the so-called p-norm. The euclidean norm (7.17) is hence also called
2-norm.

(c) Another related norm is given by:

lim
p→∞

p
�
|x1|p + · · ·+ |xn|p = max{|x1|, . . . , |xn|}
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Maximum norm or ∞-norm

�x�∞ =
���



x1...
xn



���
∞

:= max{|x1|, . . . , |xn|} (7.19)

= lim
p→∞

�x�p, x ∈ Fn.

Let us check for n = 2 that the three properties in Definition 7.33. Let α ∈ F and
x =

�
x1

x2

�
,y =

�
y1
y2

�
∈ F2.

(N1) �x�∞ = max{|x1|, |x2|} is only 0 if x1 = 0 and x2 = 0, hence x = o.

(N2) �αx�∞=max{|αx1|, |αx2|}=max{|α| |x1|, |α| |x2|}= |α|max{|x1|, |x2|}= |α|�x�∞
(N3) The triangle inequality:

�x+ y�∞ = max{|x1 + y1|, |x2 + y2|} ≤ max{|x1|+ |y1|, |x2|+ |y2|}
(∗)
≤ max{|x1|, |x2|}+max{|y1|, |y2|} = �x�∞ + �y�∞

On the right-hand side, you see the geometric picture for dif-
ferent norms. Usually, one calls it the “unit circles”, which
means the sets

{x ∈ R2 : �x�p = 1}
Such a subset of R2 consists of all vectors with length 1, for
different p = 1, 2, 5 and ∞.
For p = 2, this in indeed a usual circle. However, also the
different geometric views for other p are interesting:

x1

x2

0

p
=∞

p
=
2p

=
1

p
=
5

p

Assume you are in Manhattan inside a taxicab at point
p. Driving one block costs you $ 1. If you have $ 2 in
your pocket, you can reach all the red points in the
map. If you have $ 5, you can get to all the red and the
blue points. The ε-neighbourhoods

{x ∈ R2 : �x− p� < ε}

in Manhattan are just squares, which stay at one
corner, and not real circles. This exactly the 1-norm
�·�1, which is often alternatively called “taxicab norm”.
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Rule of thumb: Norm gives you lengths and distances

You should imagine �x� as the length of the “vector arrow” x. Hence, �x−y� is the
length of the connection vector between x and y – or in other words: The distance
between x and y.

Example 7.35. – p-norm for polynomials. The p-norms in Fn, which we defined
above, can be generalised for functions. For example, for the R-vector space P([a, b]),
which means all polynomial functions f : [a, b] → R, we can also define such norms:

Norms for polynomials on [a, b]

�f�p := p

�� b

a

|f(x)|p dx for p ∈ [1,∞) and �f�∞ := max
x∈[a,b]

|f(x)|

On the right-hand side, you see some polynomial
functions f ,g,h ∈ P([a, b]). The area of the blue
region is

�f�1 =
� b

a

|f(x)| dx

and the area of the red region is:

�g − h�1 =
� b

a

|g(x)− h(x)| dx.

g

h

a b

f

x

In later lectures, like mathematical analysis, we will prove the three properties (N1),(N2)
and (N3) for all these norms.

7.5.3 Norm in pre-Hilbert spaces

Proposition & Definition 7.36. Induced or associated norm

Let V be a pre-Hilbert space, which is an F-vector space with an inner product �·, ·�.
Then

�x� :=
�

�x,x�, x ∈ V

defines a norm and it is called the induced norm or associated norm w.r.t. �·, ·�.
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Proposition 7.37. Cauchy-Schwarz inequality

Let V be a pre-Hilbert space. For all x,y ∈ V :

|�x,y�|2 ≤ �x,x��y,y�.

With the associated norm from Proposition& Definition 7.36, we get:

|�x,y�| ≤ �x� �y�.

Equality holds if and only if x and y are linearly dependent.

Example 7.38. (a) The standard inner product �x,y�euclid = x1y1 + · · · + xnyn in Fn

induced the 2-norm �x� =
�

|x1|2 + · · ·+ |xn|2 in Fn.

(b) The associated norm with respect to the inner product �x,y� := �Ax,y�euclid in Fn

where A ∈ Fn×n is a selfadjoint and positive definite matrix is given by

�x� =
�

�x,x� =
�
�Ax,x�euclid.

For the example A =
�
1 1
1 4

�
, we get

���
�
x1

x2

���� =

���1 1
1 4

��
x1

x2

�
,

�
x1

x2

��
euclid

=
�

|x1|2 + x1x2 + x2x1 + 4|x2|2.

(c) Looking at the F-vector space P([a, b]) of all polynomial functions f : [a, b] → F, we
defined the inner product

�f ,g� =
� b

a

f(x)g(x) dx . (7.20)

The associated norm in P([a, b]) is the already introduced 2-norm since

�f� =
�
�f , f� =

�� b

a

f(x)f(x) dx =

�� b

a

|f(x)|2 dx = �f�2.

7.5.4 Recollection: Angles, orthogonality and projection

Let V be a pre-Hilbert space, which means an F-vector space with given inner product
�·, ·�, and let �.� be the associated norm.

In this case, we have again the geometric structure and can talk about angles, orthogonal
vectors and orthogonal projections:
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Proposition & Definition 7.39. Still the same about orthogonality:

• For x,y ∈ V we write x ⊥ y if �x,y� = 0.

• For F = R and x,y ∈ V \ {o} we define:

angle(x,y) := arccos

� �x,y�
�x��y�

�
.

• For a nonempty set M ⊂ V we call

M⊥ := {x ∈ V : x ⊥ m for all m ∈ M}

the orthogonal complement of M . This is always a subspace of V .
Instead of x ∈ M⊥, we often write x ⊥ M .

• For x ∈ V and a subspace U of V there is a unique decomposition

x = p+ n =: x U + x U⊥

into the orthogonal projection p =: x U ∈ U and the normal component
n = x U⊥ ∈ U⊥ with respect to U . The calculation is given by

G(B)ΦB(p) =



�x,b1�...
�x,bn�


 (7.21)

for any basis B = (b1, . . . ,bn) of U , and n = x− p.

• A family B = (u1, . . . ,un) with vectors from V is called:

– Orthogonal system (OS) if ui ⊥ uj for all i, j = 1, ..., n with i �= j;
– Orthonormal system (ONS) if, in addition, �ui� = 1 for all i = 1, ..., n;
– Orthogonal basis (OB) if it an OS and a basis of V ;
– Orthonormal basis (ONB) if it an ONS and a basis of V .

• OS that do not own the zero vector o are always linearly independent.

• If B = (b1, . . . ,bn) is an OB of U , then the equation (7.21) is much simpler:

ΦB(x U) =




�x,b1�
�b1�2...
�x,bn�
�bn�2


 , i.e. x U =

�x,b1�
�b1�2

b1 + . . .+
�x,bn�
�bn�2

bn. (7.22)

If B is an ONB, then it gets also easier �bi�2 (= 1).

Example 7.40. (a) The vectors x =
�
1
i

�
and y =

�
0
1

�
from C2 are not orthogonal w.r.t.

the standard inner product �·, ·�euclid since

��1
i

�
,

�
0

1

��
euclid

= 1 · 0 + i · 1 = i �= 0.


