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Proposition & Definition 7.14. Monomial basis of Pn(R)

Let n ∈ N0. The particular polynomials m0,m1, . . . ,mn ∈ Pn(R) defined by

m0(x) = 1, m1(x) = x, . . . , mn−1(x) = xn−1, mn(x) = xn for all x ∈ R

are called monomials. The family B = (m0,m1, . . . ,mn) forms a basis of Pn(R)
and is called the monomial basis. Hence dim(Pn(R)) = n+ 1.

Corollary 7.15. The method of equating the coefficients

Let p and q be two real polynomials with degree n ∈ N, which means

p(x) = anx
n + . . .+ a1x+ a0 and q(x) = bnx

n + . . .+ b1x+ b0

for some coefficients an, . . . , a1, a0, bn, . . . , b1, b0 ∈ R.
If we have the equality p = q, which means

anx
n + . . .+ a1x+ a0 = bnx

n + . . .+ b1x+ b0, (7.3)

for all x ∈ R, then we can conclude an = bn, . . . , a1 = b1 and a0 = b0.

VL18
↓

Remark:
Since dim(Pn(R)) = n+ 1 and we have the inclusions

P0(R) ⊂ P1(R) ⊂ P2(R) ⊂ · · · ⊂ P(R) ⊂ F(R) ,

we conclude that dim(P(R)) and dim(F(R)) cannot be finite natural numbers. Sym-
bolically, we write dim(P(R)) = ∞ in such a case.
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7.4 Coordinates with respect to a basis

7.4.1 Basis implies coordinates

Again, we deal with the case F = R and F = C simultaneously. Therefore, let V be an
F-vector space with the two operations + and ·. Let also n := dim(V ) < ∞ and choose
a basis B = (b1, . . . ,bn) of V .

Since B is a generating system and linearly independent, each v from V has a linear
combination

v = α1b1 + . . .+ αnbn (7.4)

where the coefficients α1, . . . ,αn ∈ F are uniquely determined. We call these numbers
the coordinates of v with respect to the basis B and sometimes write vB for the vector
consisting of these numbers:

A vector v in V and its coordinate vector vB in Fn

v = α1b1 + . . .+ αnbn ∈ V ←→ vB =



α1...
αn


 ∈ Fn. (7.5)

When fixing a basis B in V , then each vector v ∈ V uniquely determines a coordinate
vector vB ∈ Fn – and vice versa.

Forming the coordinate vector is a linear map

The translation of a vector v ∈ V into the
coordinate vector vB ∈ Fn defines a linear
map:

ΦB : V → Fn , ΦB(v) = vB

More concretely:

ΦB(α1b1 + . . .+ αnbn) = α1e1 + . . .+ αnen

For all x,y ∈ V and λ ∈ F, the map Φ sat-
isfies two properties:

vector space V

ΦB

�

� Φ−1
B

vector space Fn

ΦB(x+ y) = ΦB(x) + ΦB(y) (+)

ΦB(λx) = λΦB(x) ( · )

v = α1b1 + . . .+ αnbn ∈ V ←→ ΦB(v) =



α1...
αn


 ∈ Fn. (7.6)

The linear map ΦB is called the basis isomorphism with respect to the basis B and
is completely defined by Φ(bj) = ej for j = 1, . . . , n.
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Example 7.16. An abstract vector is represented by numbers

The three functions sin, cos and arctan from the vector space F(R), cf. Example 7.4,
span a subspace:

V := Span(sin, cos, arctan) ⊂ F(R).

In the same manner as before, we can show that the three functions are linearly
independent. Hence, they form a basis of V :

B := (sin, cos, arctan).

Now, if we look at another function v ∈ V given by

v(x) = 8 cos(x) + 15 arctan(x) for all x ∈ R, hence v = 8cos + 15arctan.

Then:

sin
cos

arctan

v = 8cos + 15arctan

We find
v = 8cos + 15arctan

directly by using
its coordinates:

ΦB(v) =

�
0
8
15

�
.

Rule of thumb: V is completely represented by Fn

Each F-vector space V with n := dim(V ) < ∞ is represented by Fn if you fix a basis
B = (b1, . . . ,bn)
For each vector v ∈ V , there is exactly one coordinate vector ΦB(v) ∈ Fn. Instead

of using v ∈ V , one can also do calculations with ΦB(v) =



α1...
αn


 ∈ Fn.
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Example 7.17. The polynomials p,q ∈ P3(R) given by p(x) = 2x3 − x2 +7 and q(x) =
x2+3 can be represented with the monomial basis B = (m0,m1,m2,m3) by the coordinate
vectors:

Example 7.18. The matrix A =
�
1 2
0 3

�
∈ R2×2 has the following coordinate vector with

respect to the basis B from equation (7.1):

ΦB(A) =

�
1
2
3

�
.

The matrix 3A has the coordinate vector

�
3
6
9

�
.

The matrix

C =



5 0 5
0 2 0
5 0 5




7.4.2 Change of basis

For a given basis B = (b1, . . . ,bn) of the vector space V , we have the linear map

ΦB : V → Fn , ΦB(bj) = ej for all j
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which is also invertible. We have called it the basis isomorphism. For a given element
v = α1b1 + . . .+ αnbn, we can write:

v = α1b1 + . . .+ αnbn = α1Φ
−1
B (e1) + . . .+ αnΦ

−1
B (en) = Φ−1

B (ΦB(v)) .

Φ−1
B : Fn → V , Φ−1

B (ej) = bj for all j

Example 7.19. Consider the already introduced monomial basis B = (m2,m1,m0) =
(x �→ x2, x �→ x, x �→ 1) of the space P2(R) and the polynomial p ∈ P2(R) defined by
p(x) = 4x2 + 3x− 2. Then:

p = Φ−1
B

�
4
3
−2

�
= Φ−1

B (ΦB(p)), since p = 4m2 + 3m1 − 2m0.

Example 7.20. Let V = R2 and choose the basis B = (
�
1
1

�
,
�
0
1

�
). The vector x =

�
3
7

�
∈ V

can then be represented as:

x =

�
3

7

�
= 3

�
1

1

�
+ 4

�
0

1

�
=

�
1 0
1 1

��
3

4

�
= Φ−1

B (ΦB(x))

Now, let C = (c1, . . . , cn) be another basis of V .

Question: Old versus new coordinates

How to switch between both coordinate vectors?

B-coordinates ΦB(v) =



α1...
αn


 ?←→ C-coordinates ΦC(v) =



α�
1...

α�
n




Fn Fn

V

Φ−1
B Φ−1

C
?

?
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To get the map from “left to right” by f : Fn → Fn, f := ΦC ◦ Φ−1
B . More concretely for

all canonical unit vectors ej ∈ Fn, we get:

f(ej) = ΦC(Φ
−1
B (ej)) = ΦC(bj) (7.7)

Since f is a linear map, we find a uniquely determined matrix A such that f(x) = Ax for
all x ∈ Fn. This matrix is determined by equation 7.7 and given a suitable name:

Transformation matrix

TC←B :=


ΦC(b1) · · · ΦC(bn)


 ∈ Fn×n (7.8)

The corresponding linear map gives us a sense of switching from basis B to the basis C.
Also a good mnemonic is:

Φ−1
C TC←B x = Φ−1

B x for all x ∈ Fn (7.9)

Now, if we have a vector v ∈ V and its coordinate vector ΦB(v) and ΦC(v), respectively,
then we can calculate:

TC←BΦB(v) = ΦC(Φ
−1
B (ΦB(v))) = ΦC(v) .

We fix our result:

Transformation formula

ΦC(v) = TC←B ΦB(v). (7.10)

ΦB(v) ∈ Fn ΦC(v) ∈ Fn

v ∈ V

Φ−1
B Φ−1

C
TC←B

TB←C

TB←C = (TC←B)
−1. (7.11)
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Rule of thumb: How to get the transformation matrix TC←B

The notation TC←B means: We put the vector in B-coordinates in (from the right)
and get out the vector in C-coordinates. To get the transformation matrix TC←B
write the basis vectors of B in C-coordinates and put them as columns in a matrix.

Example 7.21. We already know the polynomial basis

B = (m2����
=:b1

, m1����
=:b2

, m0����
=:b3

) = (x �→ x2, x �→ x, x �→ 1)

in P2(R). Now, we can easily show that

C = (m2 − 1
2
m1� �� �

=: c1

, m2 +
1
2
m1� �� �

=: c2

, m0����
=: c3

).

defines also a basis of P2(R). Now we know how to change between these two bases.
Therefore, we calculate the transformation matrices. The first thing you should note is
that the basis C is already given in linear combinations of the basis vectors from B. Hence
we get:

=⇒ TB←C =




1 1 0
−1/2

1/2 0
0 0 1


 .

By calculating the inverse, we get the other transformation matrix TC←B = (TB←C)−1:

TC←B =


ΦC(b1) ΦC(b2) ΦC(b3)


 =




1/2 −1 0
1/2 1 0
0 0 1




For an arbitrary polynomial p(x) = ax2 + bx+ c with a, b, c ∈ R, we get:

ΦC(p) = TC←B ΦB(p) =




1/2 −1 0
1/2 1 0
0 0 1






a
b
c


 =




a/2 − b
a/2 + b

c


 .
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Hence, for our example p(x) = 4x2 + 3x− 2, a = 4, b = 3 and c = −2, we get:

ΦC(p) =




4/2 − 3
4/2 + 3
−2


 =



−1
5
−2


 .

Let us check again if this was all correct:

(−1) (x2 − 1
2
x)� �� �

c1(x)

+5 (x2 + 1
2
x)� �� �

c2(x)

+(−2) 1����
c3(x)

= (−1 + 5)x2 + (1
2
+ 5

2
)x+ (−2)1 = 4x2 + 3x− 2.

Example 7.22. Now, we look at R2 with the two bases B = (
�
1
2

�
,
�
3
4

�
) and C = (

�
1
0

�
,
�
2
2

�
).

R2 R2 R2

V = R2

Φ−1
B

Φ−1
E = idΦ−1

C
?

?

TE←B =

�
1 3
2 4

�
and TE←C =

�
1 2
0 2

�
.

Now, for getting TC←B, we have to combine:

TC←B = TC←ETE←B = (TE←C)
−1TE←B .

(TE←C | TE←B) � (1 | TC←B), so
�

1 2 1 3
0 2 2 4

�
�

�
1 0 −1 −1
0 1 1 2

�
.
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Question: Can we do a similar thing in the polynomial space? Consider bases B and C
that is not the simple monomial basis:

B = (2m2 − 1m1� �� �
=:b1

, −8m1 − 2m0� �� �
=:b2

, 1m2 + 4m1 + 1m0� �� �
=:b3

)

and C = (1m1 + 1m0� �� �
=: c1

, 2m2 + 2m1� �� �
=: c2

, 1m2 + 1m0� �� �
=: c3

) .

Answer: Yes, we can do the same by adding the the monomial basis (or a other
well-known basis) in the middle. We call the monomial basis by A, which means A =
(m2, m1, m0). Then TA←B and TA←C are immediately given:

TA←B =




2 0 1
−1 −8 4
0 −2 1


 and TA←C =



0 2 1
1 2 0
1 0 1


 ,

and then we get TB←C:

TB←C by using an additional “nice” basis A

TA←C = TA←B TB←C

ΦA(x)
TA←B�−→ ΦB(x)

TB←C�−→ ΦC(x)
and hence TB←C = (TA←B)

−1 TA←C.

Since we again have to find an inverse of a matrix, we can use the Gauß-Jordan algorithm
again:

(TA←B | TA←C) � (1 | TB←C). (7.12)

For our example, this gives us:



2 0 1 0 2 1
−1 −8 4 1 2 0
0 −2 1 1 0 1


 �




1 0 0 3 −2 4
0 1 0 −7/2 3 −4
0 0 1 −6 6 −7


 .

The boxed matrix is indeed TB←C.
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Change of basis for audio: WAV vs. MP3

Assume you have an audio signal f given at
finite time steps t = 1, 2, ..., 50 (e.g. milli-
seconds). Hence, you have some measure val-
ues f1, f2, . . . , f50 ∈ R.

f = 123 50

b1:
1

1

b2:
2

1

...b50:
50

1

At this point you know that the audio sig-
nal f is a vector in a 50-dimensional space,
which can be represented with respect to the
canonical basis B = (b1, . . . ,b50) of R50.
The coordinates of f are exactly the values
f1, f2, . . . , f50. For describing tones (so os-
cillations) this basis is not optimal!

We want to change to a basis C of R50, which is better fitting for tones.

Sine waves Cosine waves

c25:
no oscillation

123 50

c1:
1 oscillation

123 50

c26:
1 oscillation

123 50

c2:
2 oscillations

123 50

c27:
2 oscillations

123 50

c3:
3 oscillations

123 50

c28:
3 oscillations

123 50

...
...

c24:
24 oscillations

123 50

c49:
24 oscillations

123 50

c50:
25 oscillations

123 50
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One can show: C = (c1, . . . , c50) is also linearly independent and hence a basis of
R50.

f = 123 50

The signal f from above has the following form:

f = c3 − c25 + 3c26 +
1
4
c40.

We reckon that most signals f are a superposition of some “basic tones” ci.

Compression: One stores only the coordinates in ΦC(f). One can also focus on
the (for humans) important frequencies and ignore the higher and lower ones (e.g.
MP3 file format). All this saves storage space instead of storing the coordin-
ates ΦB(f) = (f1, . . . , f50)

T (e.g. WAV file format). Similar ideas exist for two-
dimensional signals like pictures: ⇒ BMP vs. JPG.

Information: The change of basis from B to C is important for a lot of applications
and known as the Fourier transform. We will consider it in more detail in the
analysis lecture.

7.5 General vector space with inner product and
norms

Recall that in the vector spaces Rn and Cn, besides the algebraic structure given by

vector addition + and the scalar multiplication ·,

we also defined a geometric structure by choosing

an inner product �·, ·� and also a norm � · �

for measuring angles and lengths.

Attention! Convention for F=R and F=C
Since we handle the cases F = R and F = C simultaneously, we also use the notion
of the complex conjugation in the real case. Hence, for α ∈ F we write:

α :=

�
α if F = R,
α if F = C (complex conjugate number).

Analogously, for a matrix A ∈ Fm×n with m,n ∈ N:

A∗ :=

�
AT if F = R (transpose),
A∗ if F = C (adjoint).


