General vector spaces

7.1 Vector space in its full glory
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Definition 7.1. Real or complex vector spaces

Let IF be either R or C. A nonempty set V' together with two operations,
—

e ¢ vector addition +:V xV =V,
e and a scalar multiplication - : F xV —V,

where the rules below are satisfied, is called an F-vector space. The elements of V
are called vectors, and the elements F are called scalars. The two operations have

to satisfy the following rules:

(1) Vv,weV: V+w=w+V (+ is commutative)
(2) Va,v,w eV : ut+(v+w)=(u+v)+w (+ is associative)
(3) There is a zero vector 0 € V' with the property: ¥Yv € V we have v+ 0 = v.
(4) For allv € V there is a vector —v € V with v+ (—v) = o.

(5) For the number’1 € F and each v € V, one has: 1-v =v.

(6) Yo, € F WweV: X-(u:v) = (M) -v (- is associative)
(7)) VAeF VYw,weV: A (wv+w) = (A-v)+(\-w) (distributive -+)
(8) VA, ueF WweV: A+wp-v = (Aev)+(pu-v) (distributive +-)
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Example 7.2. R" and C". At this point, we are very familiar with the space F", where
the vectors have n components consisting of numbers from F and the addition and scalar
multiplication is done componentwise:

(1 (%1 )\'Ul
AelF, v=| : = Av=A| | = :
Up, Uy, AU,
U1 U1 U1 U1 Uy + vq
u=1\:\],v=1|": = utv=|:|+|:|:= :
Un, Un Un, Un, Uy + Un

Now, this is now just a special case of an F-vector space.
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Example 7.3. Matrices. The set of matrices V' := F"™*" together with the matrix
addition and scalar multiplication

aixz - Qip bin -+ biy ajp #0110 ay + by
+ _ . .
m1  *°° Amn bml e bmn Am1 + bml o Qmn + bmn
TV 4 N VvV 4 N TV 4
A B A+B
ai; - Qi Aajp - (Aarg
A -
m1 **° Omn )\aml e )\amn
N -~ 7 - 7
A A-A

defines also an F-vector space.
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Example 7.4. Functions. Let F(R) be the set of functions f : R — R.
For all & € R and f,g € F(R) define o - f and f + g by

(a-f)(z) = a- f(z)

(f+g)(z) = f(z)+g@)
for all z € R.
- 4
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This is a natural definition for the c-multiple of a function and the sum of two functions.
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Hence, F(R) with + and - is an)}gvector space. CL‘ ck (\«(t-f (/] ) - (& )
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Lemma 7.5. 0=0-f and —f=(—1)-f ~

Let V' be an F-vector space with the operations + and -. For oll £ € V', we have

o=0-f and —f=(-1)-f.

bo: 08 =(040)-5 205 + 05
&) z),(l«)

= 05 +(-04) - 0;4(0; 1 (0-5)) = 05
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= (L)) 5 ¢ 45 ()52 §e(ns
() L (-5) = (4)(!)
= 0+(J)=5+(05 + () s) + ()5 -(A)f
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7.2 Linear subspaces ©°

We already defined the term linear subspace in R™ and C™ and, of course, it can now be
generalised for the general veptor spaces. l\'-w&‘?‘“

Let us look at a special sybset from Example 7.4:
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Example 7.6. Polynomial functions. Let P(R) denote the set of polynomial functions
f: R — R. We know that P(R) is a nonempty subset of F(R) (set of all functions
R — R) from Example 7.4. The addltlor + and scalar multiplication - are just inherited

from F(R). ([R) 4(,1, a  Vedse Ppace 2
J(X) =1 YL"‘ AX a r(,(y,,,..,,,.‘( ”ac.‘ addib.., R Z(LR) X i(_fR) ’—>?(IR)

£(X) = cos(x) wol - Meed sede wth. - . R x P(R)—>FR)
To dbee ands: Ts 4, volb-difimed o0u®(R)?




TD SLow: jlj € ?(R) , oe R
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Now checking (1)—(8) is very fast because:

(1) f+g=g+f, v J rf(R) all functions
(2) f+(g+h)=(f+g)+h, ; (R)
(5) 1-f=f, P
6) a-(B-f) = (af)-f, / all polypomial
(N a-f+g) = (a-f)+(a-g) :// fu.ri‘ctlons
() (a+p)-f = (Oéf'_f)Jr(ﬁ'f) g
bt for sl 4€ F(R). Thendm o ol i
fe P(R)<F(R)
°3-f
?(R) tnl e ilds e rulec fo\m J:UR) ) L )

(3) o€ PR) /

(1) fe AR) => - fe P(R)
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Proposition & Definition 7.7. Linear subspace / ?ﬁcc

or in short a subspace of V
VA

Let V' be an F-vector space and let U be a non-empty subset of V', which is closed
under vector addition and scalar multiplication of V', which means

(a) for allu,v € U, we have u+v € U and

(b) for alla € F and u € U, we have - u € U.

Then U 1s also an F-vector space. In this case, U is called a linear subspace of V'
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Example 7.8. Quadratic pol&hbfﬁiéls;f‘ L&t Py(R) be the set of all polynomials with
degree < 2, which means

all functions p:R =R, p(z)= asx® ¥ ayx Fag  with as, ay, ag € R.
Is Py(R) with the vector addition + and - from F(R) a vector space?

Obviously, Po(R) € F(R) and Py(R) # @. Using Proposition 7.7 we only have to check
that Py(R) is closed under + and -, which means that we have to check (a) and (b):

Let p,q € P2(R) and a € R. Then, there are as, ay, ag, ba, by, by € R such that
p(z) = apa® + ez +ag  and  q(x) = byx® + byx + by.

Hence:

(P+a)(z) = p(z)+a@) = (a2®+az+a) + (ba® + bz + bo)
= (ag +by)z® + (a1 + i)z + (ag + by), Cﬁ (IR)
(a-p)(z) = a- p(x = a- (a2 + a1z + ap)
= (aaz)z? + (aa)r + (aap)

We conclude that p+q € P2(R) and a - p € P2(R). The set Py(R) is a subspace of F(RR)

and a vector space for its own.

Analogously, for n € Ny, we define P, (R) as the set of all polynomials with degree < n.
It forms again a vector space with the operations + and - from F.
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Example 7.9. Upper triangular matrices Let n € N and NR"™™" the set of all upper
triangular matrices A € R"*". The operations + and - are the same as before for all

matrices.
Check: WR™ hoh%—ﬂf ~d  (a) L) .
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Example 7.10. The set of all matrices U in the following form:

a 0 a is closed under matrix addition and the multiplica-
0 b with a,b € C tion with scalars o« € C. Therefore, U is a subspace
a 0 of C**? and a C-vector space for itself.

0
a
0
(633 Eu/

00O
A O a 4‘ 0 q‘ a*q‘ 0 a-‘q\ /
o b ol i|lo (' o) = O [+ ©O €U
A O a a 0 a a+e) o ata
€u €U

If we look back at the polynomial spaces, we notice that
we have the following inclusions:

_Py(R) C Pi(R) C P2(R) € --- C P(R) C F(R)
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7.3 Recollection: basis, dimension and other stuff

Let F € {R,C} and V be an F-vector space with vector addition + and scalar multiplic-
ation -.

As we did for R" and later for C", we introduce notions like linear independence, basis,
dimension and related definitions. In spite of considering abstract vector spaces, the
notions still work exactly the same.
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Definition 7.11. Same as before: Basis, dimension, and so on

Let V' be an F-vector space with operations + and -.

o For k € N, vectors vi,...,vp €V and scalars ey, ...,ar € F the vector
k
a1V1+...+akvk:Zo¢ivi eV
i=1

is called @ linear combination. of the vectors vy, ..., Vg.

e The set of all possible linear combinations for the vectors of a subset M C V
is called the dinear hull or span-of M :

Span(M) = {A1u1+--~+)\kuk 5 ul,...,ukEM, )\1,...,)\]66]]?, kEN}

o A family € = (vq,...,vg) consisting of k vectors from V is called a generating
system for the subspace U C V', if U = Span(vy, ..., V).

o A family & = (vi,...,vg) consisting of k vectors from V is called linearly
dependent if o can be represented by a non-trivial linear combination of vectors
from E. If there is no such non-trivial linear combination, the family is called
linearly independent.

o A family € that is a generating system for U C V' and linearly independent is
called a basis of U.

e The number of elements for a basis of U is called the dimension of U. We
Just write dim(U).

Rule of thumb: Basis, dimension and similar things

e A generating family € = (vq,...,vg) of U is called this way because we can
reach each point in U with linear combinations of vector from £ and no other
points.

o A family £ is linear independent if we need all “family members” to span (or
generate) the subspace Span(E).

e A basis B of U is a smallest generating set U. (We cannot omit a vector from
B.)

e The dimension of a subspace U

= the number of elements of a basis of U. (All bases have the same number
of elements, just redo the proof in Proposition 3.25.)

= the smallest possible size for a generating system of U. (With less vectors
it is not possible to span the whole space U.)

= the mazimal number of vectors from U that form a linearly independent
family. (If you choose more vectors, there are always linearly dependent.)
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Example 7.12. — Matrix vector spaces

(a)

(c)

The vector space €C?*? of all complex 2 x 3-matrices can be written in the following
way:

s ={(§ 2 D) iasmdepec)

Wo01): @

00 000
10/7\00 1
B—( 100 010 001 000 000 000 >
| 000/°\000/"\000/"\100/°7\010/7\00 1

is a generating system for C**3. B is also linearly independent: From

100 010 n 001 4§ 000 4. 000 n 000 0 = 90 o
a — -
—\000 Z\000 "Noo0o -\100/ —\010 Z\oo1 ’ 09a

(522)
we conclude o = B = v = = e = p = 0. Hence, B is a basis of C**? and the

dimension of C**® is [B] = 6. Analogously, one can prove: dim(F™ ") =m - n.
P———e e
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In a similar way, we can prove that

o~ (9.0 1) 2)

forms a basis of NR?*2. Hence:

(8 8)eoea o8 ) B0 R oo

We conclude: dim(NR**?) =2+ 1 = 3.

Analogously for given n € N, one can prove dim(NR"*") = n+(n—1)+...+1 = @
As a special vector space, we look at:
a 0 « 1 0 1 0 0 O
U = 0 B 0]|:a,86€eClr=<al0 0 O0]+510 1 0]:a,8€eC
a 0 « 1 0 1 0 0 0

)



7.3 Recollection: basis, dimension and other stuff

1 0 1\ /0 0 0
:Span<000,010). (7.2)
101/ \o o o

=A =B

Hence, B := (A, B) is a generating system for U. Again, we show that B is also
linearly independent. From aA 4+ B = o, one gets

a 0 «o 000
0 B 0|=aA+pB=0=|(00 0],
a 0 «o 000
and concludes @ = § = 0. Therefore, B is a basis of U and dim(U) = 2.

Example 7.13. — Polynomial space P;(R).  We define the special polynomials

mg, m;, my € Py by

my(z) :=1, my(z):=2 and my(z):=2> forall z€R

and see:

Pa2(R) ={x — Gt g T Gy a3, a1 an € R} = {asmy + aym; + agmy : ag, a1, a9 € R}

= Span(mg, mi, mg)

Hence; B := (myp, m;, my) is a generating system for P»(R).
(ELh‘A‘u; J‘o .sLou : ("", e a o Im 7 Gre Z.h . f-'l.aly.

0((&.‘,1- ﬂk" + Ih‘l - O (1"-/‘0 vech~ o R—=>IR
A X 0
<—=> O('/I+px4&x =0 j.;r“u xe R .

7> X= O: X + 0 + O = O
X=A: X «+ ﬁ -+ { =0
X=-4: °(__F ..,LX = 0
_ | LR L s A 0 olae
IFIY ae O by Joiesn ,)[ 114 4/
1 -2 11l ¢
—> o(:P:):O => :B {aws c-J P,_(’R)
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Proposition & Definition 7.14. Monomial basis of P,(R)

Let n € Ng. The particular polynomials mg, my, ..., m, € P,(R) defined by

my(z) =1, my(z)=2, ..., m,(z)=2"" m,(z)=2" foralzcR

are called monomials. The family B = (mg,my,..,my,) forms a basis of Pn(R)
and is called the monomial basis. Hence dim(P,(R)) =n + 1.

~D T(‘)/ “a e |

Corollary 7.15. The method of equating the coefficients

Let p and q be two real polynomials with degree n € N, which means
p(x) =az" + ...+ a1z + ag and  q(z) =bya"™ + ...+ bix + by

for some coefficients a,, ..., ay,a9,by,,...,b1,by € R.
If we have the equality p = q, which means

apx” + ...+ ax+ayg = by + ...+ bz + by, (7.3)

for all x € R, then we can conclude a, =b,, ..., a1 = by and ay = by.

| Remark: !

Since diim(P,(R)) = n + 1 and we have the inclusions
Po(R) C Pi(R) C P(R) C --- C P(R) C F(R),

we conclude that dim(P(R)) and dim(F(R)) cannot be finite natural numbers. Sym-
bolically, we write dim(P(R)) = oo in such a case.




