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Definition 6.29. Eigenspace

The solution set of the LES (A−λ1)x = o, which means Ker(A−λ1), is called the
eigenspace with respect to the eigenvalue λ and denoted by Eig(λ). Each nonzero
vector x ∈ Eig(λ) \ {o} is an eigenvector w.r.t. the eigenvalue λ. VL16

↓

Example 6.30. Consider A =
�
3 2
1 2

�
: xi �= o is an eigenvalue for λi with i ∈ {1, 2} if

Axi = λixi, i.e. (A− λi1)xi = o.

Hence, we have to solve the LES (A− λ11)x1 = o and (A− λ21)x2 = o.

λ1 = 4 : A− λ11 =

�
3− λ1 2

1 2− λ1

�
=

�
−1 2
1 −2

�
,

(A− λ11)x1 = o

In the same manner:

λ2 = 1 : A− λ21 =

�
3− λ2 2

1 2− λ2

�
=

�
2 2
1 1

�
,

(A− λ21)x2 = o

Definition 6.31. Multiplicities

Let A ∈ Cn×n be square matrix. Then the characteristic polynomial can be written
as:

pA(z) = (λ1 − z)α1 · (λ2 − z)α2 · · · (λk − z)αk (6.2)
where λ1, . . . ,λk are pairwise different. The natural number αj above is called:

α(λj) := αj algebraic multiplicity of λj

and tells you how often the eigenvalue λj occurs in the characteristic polynomial.
We also define

γ(λj) := dim(Eig(λj)) = dim(Ker(A− λj1)) geometric multiplicity of λj
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Remark: Recipe for calculating eigenvectors

Let A ∈ Cn×n be a square matrix.

(1) The eigenvalues λ are the zeros of the characteristic polynomial pA of A. In
other words, the solutions of

pA(λ) = det(A− λ1) = 0.

(2) If A is real, then pA(λ) is a real polynomial. If it has a complex zero λ �∈ R,
then its conjugate λ is also a zero,

(3) If one eigenvalue is found, we can reduce the characteristic polynomial by equat-
ing coefficients (or polynomial division).

(4) The eigenvectors x are given by the solutions of the LES (A − λ1)x = o for
each eigenvalue, where only the nonzero solutions x �= o are interesting.

Example 6.32.

p(λ) = −λ3 + 5λ2 − 8λ+ 6

• n = 3 is odd: “−λ3”

• Try some values and find: λ1 = 3.

Exercise 6.33.
Let A be a square matrix and λ1,λ2 two different eigenvalues. Show that

Eig(λ1) ∩ Eig(λ2) = {o}
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6.6 The spectral mapping theorem

Let λ ∈ C be an eigenvalue of A ∈ Cn×n corresponding to the eigenvector x ∈ Cn, which
means Ax = λx. Then we get for the powers:

We conclude that Am has also the eigenvector x but now it corresponds to the eigenvalue
λm instead of λ.

Now we could also bring in the addition of the matrices A0, A1, A2, and so on, and get a
similar result.

Proposition 6.34. Polynomial spectral mapping theorem

Let p(λ) = pmλ
m + pm−1λ

m−1 + . . . + p1λ + p0 be a polynomial and A ∈ Cn×n a
square matrix. Putting the matrix A into p (formally), we get the following matrix:

p(A) := pmA
m + pm−1A

m−1 + . . .+ p1A+ p01 .

It is again an n× n matrix, and we get

spec
�
p(A)

�
= { p(λ) : λ ∈ spec(A) }.

Moreover, each eigenvector of A is also an eigenvector of p(A).

Example 6.35. Let A =
�
3 2
1 2

�
. We want to know the eigenvalues of the following matrix

B = 3A3 − 7A2 + A− 21.
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A−1x = λ−1x. (6.3)

Rule of thumb:

A−1 has the same eigenvector x as A – but for the eigenvalue λ−1 instead of λ.

We simply get:
spec(A−1) = {λ−1 : λ ∈ spec(A)}.

Of course, λ−1 is always well-defined since λ �= 0.

Example 6.36. Let A =
�
3 2
1 2

�
.

A−1 =

�
1/2 −1/2
−1/4

3/4

�

This matrix has the eigenvalues µ1 = 1/4 and µ2 = 1 and the eigenvectors x1 =
�
2
1

�
and

x2 =
�

1
−1

�
.

We do not have to stop here. We can multiply A−1 again from the left to equation (6.3)
and, doing this repeatedly, we get

A−2x = λ−2x, A−3x = λ−3x, etc.,

where A−n means (A−1)n.
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Amx = λmx for all m ∈ Z.

Of course, if we can also expand it to linear combinations . . . , A−2, A−1, A0, A1, A2, . . .
which shows that our spectral mapping theorem is only a special case of a more general
one.

6.7 Diagonalisation – the optimal coordinates

We startet this chapter with a two-dimensional picture. Now, we again revisit the 2× 2-
example A =

�
3 2
1 2

�
. We know that λ1 = 4 and λ2 = 1 are the eigenvalues with associated

eigenvectors x1 =
�
2
1

�
and x2 =

�
1
−1

�
.

Optimal coordinates for A

By using for u ∈ R2 the linear combination u = α1x1 + α2x2 with coefficients
α1,α2 ∈ R, we get

Au = A(α1x1 +α2x2) = α1(Ax1)+α2(Ax2) = α1(4x1)+α2(1x2) = 4α1x1 +1α2x2.

The component in x1-direction, which is α1, is scaled by the factor λ1 = 4, and the
x2-component α2 is scaled by the factor λ2 = 1.
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x1

x2

fA

x1

x2

Ax1 = λ1x1, . . . , Axn = λnxn . (6.4)

This is what we can put together into a matrix equation:

A


x1 · · · xn




� �� �
=:X

=


Ax1 · · · Axn




(6.4)
=


λ1x1 · · · λnxn


 =


x1 · · · xn






λ1 . . .

λn




� �� �
=:D

,

or in short: AX = XD. This means that A is similar to a diagonal matrix if X is
invertible.
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Diagonalisation of A

Choose X =


x1 · · · xn


 and

D =



λ1 . . .

λn


. Then:

AX = XD. (6.5)

Multiplication (6.5)·X−1 gives:

A = XDX−1 (6.6)

and in the same ways X−1·(6.5)
gives:

X−1AX = D.

Canonical basis

Coordinates w.r.t. basis (x1, ...,xn)

u Au



α1
...
αn






λ1α1

...
λnαn




A·

D·

X−1· X· X−1· X·

The important question “Is that even possible?” is equivalent to the following:

• Can we write all u ∈ Cn as α1x1 + . . .+ αnxn?
• Span(x1, . . . ,xn) = Cn?
• Is (x1, . . . ,xn) a basis of Cn?
• Is X invertible?

Definition 6.37. Diagonalisability

A square matrix A ∈ Cn×n is called diagonalisable if one can find n different eigen-
vectors x1, . . . ,xn ∈ Cn that form a basis of Cn.
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Example 6.38. (a) The matrix A =

�
1 0
0 2

�
has e1 and e2 as eigenvectors and they

form a basis of C2. Hence, A is diagonalisable.

(b) The matrix B =

�
1 1
0 2

�
has

�
1
0

�
and

�
1
1

�
as eigenvectors and they form a basis of

C2. Hence, B is diagonalisable.

(c) The matrix C =

�
1 1
0 1

�
has only eigenvectors in direction

�
1
0

�
and they cannot

form a basis of C2. Hence, C is not diagonalisable.

Choosing a basis consisting of eigenvectors, we know that A acts like a diagonal matrix.

Proposition 6.39. Different eigenvalues ⇒ linearly ind. eigenvectors

If λ1, . . . ,λk are k different eigenvalues of A, then each family (x1, . . . ,xk) of cor-
responding eigenvectors is linearly independent.

Corollary 6.40. n different eigenvalues ⇒ diagonalisable

If A ∈ Cn×n has n different eigenvalues, then A is a diagonalisable.

Proof. A linearly independent family of n eigenvectors forms a basis for Cn.
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Example 6.41. (a) A =
�
3 2
1 2

�
has eigenvalues λ1 = 4 and λ2 = 1. Corollary 6.40

tells us that A is diagonalisable. We also verify this by looking at the eigenvectors
x1 =

�
2
1

�
and x2 =

�
1
−1

�
, which form a basis of C2. Hence,

�
3 2
1 2

�
= A = XDX−1 =�

2 1
1 −1

��
4 0
0 1

��
2 1
1 −1

�−1.

(b) The 90◦-rotation A =
�
0 −1
1 0

�
has eigenvalues λ1,2 = ±i. From A− λ1,21 =

�∓i −1
1 ∓i

�
we

conclude the eigenvectors x1 =
�
i
1

�
and x2 =

�
1
i

�
, which span C2.

Hence,
�
0 −1
1 0

�
= A = XDX−1 =

�
i 1
1 i

��
i 0
0 −i

��
i 1
1 i

�−1
. X and D are strictly complex,

while A is a real matrix.

(c) Look at the 3× 3 matrices:

A =




4 0 0
1 6 3
−2 −4 −2


 and B =




8 8 4
−1 2 1
−2 −4 −2


 .

If you calculate the characteristic polynomials, you find

pA(λ) = −λ3 + 8λ2 − 16λ = −λ(λ− 4)2 = pB(λ)

and, hence, the same eigenvalues λ1 = 0, λ2 = 4 and λ3 = 4.

For A, the eigenspaces are:

Ker(A− λ11) = Span
�� 0

−1
2

��
and Ker(A− λ21) = Span

�� 2
−1
0

�
,

�−1
2
−1

��
,

However for B, the eigenspaces are
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Ker(B − λ11) = Span
�� 0

−1
2

��
and Ker(B − λ21) = Span

�� 2
−1
0

��
.

While A has three different directions for eigenvectors and is diagonalisable, the matrix
B has for λ2,3 = 4 only one direction for eigenvectors. There are too few vectors for
a basis and B is not diagonalisable.

(d) Let A =
�
0 0
1 0

�
.

Reminder: Algebraic and geometric multiplicity

For each eigenvalue λ of A we consider

• the algebraic multiplicity of λ, denoted by α(λ), given by the multiplicity of λ
as zero of pA, and

• the geometric multiplicity of λ, denoted by γ(λ), given by the dimension of
the eigenspace Ker(A− λ1).

For A from Example 6.41 (c), we find α(0) = 1 = γ(0), α(4) = 2 = γ(4).
For B from Example 6.41 (c), we get α(0) = 1 = γ(0), α(4) = 2 �= 1 = γ(4).

Proposition 6.42. Algebraic vs. geometric multiplicity

Let A ∈ Cn×n be a square matrix, and let λ1, . . . ,λk ∈ C be all eigenvalues of A
(not counted with multiplicities). Then:

(a) α(λ1) + . . .+ α(λk) = n.

(b) For all i = 1, . . . , k, we have 1 ≤ γ(λi) ≤ α(λi).

Therefore, the following claims are equivalent:

(a) A is diagonalisable,

(b) γ(λ1) + . . .+ γ(λk) = n,

(c) γ(λi) = α(λi) for all i = 1, . . . , k.

Proof. Exercise.
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For symmetric or selfadjoint matrices, we can improve Proposition 6.39 even more:

Proposition 6.43. A=A∗: orthogonal eigenvectors

Let A ∈ Cn×n be selfadjoint, which means A = A∗, and let λ,λ� ∈ C be two
different eigenvalues of A with corresponding eigenvectors x and x�, respectively.
Then x ⊥ x�.

Proof. Since �x,λ�x�� (S4)
= �λ�x�,x� = λ��x�,x� = λ� �x�,x� (S4)

= λ� �x,x��, we have

λ�x,x�� = �λx,x�� = �Ax,x�� A=A∗
= �x, Ax�� = �x,λ�x�� see above

= λ��x,x�� Prop. 6.24
= λ��x,x��

and, hence, (λ− λ�)�x,x�� = 0. This means that the second factor has to be zero.

Proposition 6.44. A=A∗: diagonalisable - ONB of eigenvectors

Let A ∈ Cn×n be selfadjoint, which means A = A∗. Then A is diagonalisable, where
there is an ONB (x1, . . . ,xn) for Cn consisting of eigenvectors of A. The matrix

X =


x1 . . . xn




is unitary, i.e. X−1 = X∗. Therefore, we have:

A = XDX−1 = XDX∗ and D = X−1AX = X∗AX . (6.7)

Sketch of proof. Use Proposition 6.43 and Gram-Schmidt for each eigenspace to find an
ONB of Cn. Then X∗X = 1 and also X∗ = X−1.

Actually, we could generalise the Proposition from above and equation (6.7). It holds if
and only if the matrix A is normal (i.e. AA∗ = A∗A).
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Proposition 6.45.

For a diagonalisable A ∈ Cn×n, let λ1, . . . ,λn be the eigenvalues counted with algeb-
raic multiplicities. Then

det(A) =
n�

i=1

λi and tr(A) =
n�

i=1

λi ,

where tr(A) :=
�n

j=1 ajj is the sum of the diagonal, the so-called trace of A.

Proof. Exercise!

Remark:
Later, we will see that the result of Proposition 6.45 actually holds for all matrices
A ∈ Cn×n.

6.8 Some applications

Here, we look at some of very many possible applications.

Rotation of boxes
A box of the size 10cm × 20cm × 30cm rotates around a axis given by the vector
ω ∈ R3. The whole box has a angular momentum L ∈ R3.

L is given by a linear equation using ω, which means

L = Jω

with a symmetric matrix J ∈ R3×3, which is called
the inertia tensor of the box. The rotation “wobbles”
if L, which means Jω, is not parallel to the rotation
axis ω. Of course, we have three special rotation axes
given by the eigenvectors of J. They are called the
principal axes of the box.

ω
L
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Curves and areas

Which points x =
�
x
y

�
∈ R2 satisfy the equation 3x2 + 2

√
3xy + y2 + x−

√
3y = 2?

Solution: Rewrite the equation as a vector-matrix equation

2 = 3x2 + 2
√
3xy + y2 + x−

√
3y = (x y)� �� �

xT

�
3

√
3√

3 1

�

� �� �
=:A (=AT )

�
x

y

�

����
x

+(1 −
√
3)� �� �

=:bT

�
x

y

�

����
x

and diagonalise the symmetric matrix A: λ1 = 4, λ2 = 0, x1 =
1
2

�√
3
1

�
, x2 =

1
2

�−1√
3

�

�
3

√
3√

3 1

�
= A = XDX∗ = XDXT =

1

2

�√
3 −1

1
√
3

�

� �� �
X

�
4

0

�

� �� �
D

1

2

�√
3 1

−1
√
3

�

� �� �
XT

.

Then we get 2 = xTAx+bTx = xT (XDXT )x+bTx = (xTX)D(XTx)+bTX(XTx).
Setting

�
u
v

�
= u := XTx = 1

2

� √
3 1

−1
√
3

��
x
y

�
simplifies the equation to

2 = uTDu+ bTXu = (u v)

�
4

0

��
u

v

�
+ (0 −2)� �� �

bTX

�
u

v

�
= 4u2 − 2v.

The more complicated equation from above looks at lot
simpler in the “optimal” (x1,x2)-coordinate system:

2 = 4u2 − 2v, also v = 2u2 − 1,

There you immediately see that it is a parabola. The
transformation we did,

�
x
y

�
= x �→

�
u
v

�
= u = XTx,

was just a rotation by 30◦.

x

y

u

v

· 30◦

30◦

x1
x2

v = 2u2 − 1
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A simple criterion for definiteness

n = 2: det(A) = λ1λ2.

• det(A) > 0 ⇒ eigenvalues have the same sign ⇒ A (pos. or neg.) definite. If
a11 = eT1Ae1 > 0, then pos., otherwise neg. definite.

• det(A) < 0 ⇒ A indefinite

In general: A symmetric A is positive definite if all left upper subdeterminants are positive.

Summary

• All matrices A we considered here were square matrices.

• A vector x �= o, which A only scales, which means Ax = λx, is called an eigenvector ;
the corresponding scaling factor λ is called an eigenvalue . The set of all eigenvalues
of A is called the spectrum .

• λ is an eigenvalue of A if and only if (A− λ1)x = o has non-trivial solutions x �= o
(namely the eigenvectors). This is fulfilled if and only if det(A− λ1) = 0.

• For A ∈ Cn×n, we define pA(λ) := det(A− λ1), the characteristic polynomial of A,
which is a polynomial of degree n in the variable λ. It has exactly n complex zeros:
the eigenvalues of A.

• The eigenvalues λ are in general complex numbers, also the eigenvectors are complex
x ∈ Cn. All matrices should be considered as A ∈ Cn×n.

• Also in Cn, we can define inner products. Here, we only use the standard inner
product �x,y�, defined by x1y1 + · · · + xnyn. Hence we get a new operation for
matrices: A∗ := AT = (aji). It satisfies �Ax,y� = �x, A∗y� for all x,y.

• Checking eigenvalues: Product of all eigenvalues of A is equal to det(A); the sum is
equal to tr(A).

• The matrix A is invertible if and only if all eigenvalues are nonzero.

• The eigenvalues of a triangular matrix are the diagonal entries. The eigenvalues of
a block matrix in triangular form are given by the eigenvalues of the blocks on the
diagonal.

• The eigenvalues of Am are given by the eigenvalues of A to the power of m where
m ∈ Z. The eigenvectors stay the same as for A. For example, 3A17 − 2A3 + 5A−6

has the eigenvalues 3λ17 − 2λ3 + 5λ−6, where λ goes through all eigenvalues of A.
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The eigenvectors still stay the same.

• A is called diagonalisable if it can be written as XDX−1, where D is a diagonal
matrix consisting of eigenvalues of A and X gets eigenvectors in the columns. This
only works if there are enough eigenvectors directions such that X is invertible.

• A is diagonalisable if and only if for all eigenvalues λ the algebraic multiplicity of λ
is the same as the geometric multiplicity .

• If A = A∗, then A is diagonalisable and the eigenvalues are real and eigenvectors
can be chosen to be orthonormal.


