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Definition 6.29. Eigenspace

The solution set of the LES (A— A1)x = o, which means Ker(A— A1), is called the
eigenspace with respect to the eigenvalue A and denoted by Eig(\). Each nonzero
vector x € Eig(\) \ {o} is an eigenvector w.r.t. the eigenvalue \. VL16

E-(A)
b¢1x;/ fn(m =(3-A)(M)-1 = ‘f—?) + 2"'/
Example 6.30. Consider A = (*2): x; £ 0 is an cigenvalue for A, with i € {1,2} if (2 (-4
Axi=Axi, e (A-ADxi=o. = A,z 4, A=A

Hence, we have to solve the LES (A — \1)x; =0 and (A — A\21)xy = 0.

— AB-x 2N 41 2
TR G E AN ,,

(A—)\lﬂ)X1 =0 J/’““I

(7 D)= () @ nes(())

In the same manner:

L v (3= 2\ (22
M=1: A )\g]l—( ) 2_A2)_(1 1),

(A — )\2]1)}(2 =0

@ (L20E=0) @ we i (1)

Definition 6.31. Multiplicities

Let A € C™"™ be square matrix. Then the characteristic polynomial can be written
as:

pa(z) = (M — 2)%- (Ag — 2)%- - (A — )% (6.2)
where Ay, ..., A\, are pairwise different. The natural number «; above is called:

a(A;) == a;  algebraic multiplicity of A;

and tells you how often the eigenvalue \; occurs in the characteristic polynomial.

We also define
v(A;) == dim(Eig(};)) = dim(Ker(A — ;1)) - geometric multiplicity of A,
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| Remark: Recipe for calculating eigenvectors

Let A € C"™ ™ be a square matrix.

(1) The eigenvalues X are the zeros of the characteristic polynomial ps of A. In
other words, the solutions of

pa(A) =det(A— A1) =0.
(2) If A is real, then pa()) is a real polynomial. If it has a complex zero A & R,

then its conjugate \'is also a zero,

(3) If one eigenvalue is found, we can reduce the characteristic polynomial by equat-
ing coefficients (or polynomial division).

(4) The eigenvectors x are given by the solutions of the LES (A — Al)x = o for
each eirgenvalue, where only the nonzero solutions X # o are interesting.

Example 6.32.

p(A) = =X\ +5X* =8\ +6
/\_—\_—____

e n=31is odd: “—=\%"

e Try some values and find: A\; = 3.
i Sl

(f7\°+s>\‘_g7. () (2-3) = =X =1r-1
_(_xmlj/ &~

0 +21A -83%
-2 -6A) => 07(/1) = (-A‘L-rlﬁ\—’l)(ﬂ—?)
\./'\f\.J
6 -1N4¢ -ﬁ“‘l ‘/‘L terms g !
~E A () '

re

Exercise 6.33. |

Let A be a square matriz and A1, Ay two different eigenvalues. Show that

Eig(A1) N Eig(A2) = {o} _
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6.6 The spectral mapping theorem

Let A € C be an eigenvalue of A € C™*" corresponding to the eigenvector x € C", which

means/{l_)\c_:/)\L Then we get for the powers:
,AE-X = A(AX) = A (M) = AAXY = A2k :ﬁi%
_A_jx z A{Aqﬂ = A= A(Ax) = M ax = A'x

b fan
A'x = 2™x ﬁw /)
We conclude that A™ has also the eigenvector x but now it corresponds to the eigenvalue
m ;3 1 1 3 \
A" instead of . AfAG))(—'- AX-I—AX:(?\-&}:;)X
Now we could also bring in the addition of the matrices A7, A*, A~ and so on, and get a

similar result.
Proposition 6.34. Polynomial spectral mapping theorem

Let p(A) = P A™ + Pmaa A™ L + ...+ piA +po be a polynomial and A € C™™ q
square matriz. Putting the matriz A into p (formally), we get the following matrix:
hnhxan

P(A) = pfAT + pp (A" 1+ +pfA+pl € C

It is again an'n X n matriz, and we get

spec(p(A)) = {p(A) : X € spec(4) }.

Moreover, each eigenvector of A is also an eigenvector of p(A). S ?,M)_ - J(m‘,f

Example 6.35. Let A = (° g) We want to know the eigenvalues of the following matrix

B=3Al-TA+A-21. D gec(A)= 441, )r,,;(j;), X, - (:)

——

&

‘%Lcl‘m« 4'/ ﬂ ! /AA = 9(‘/)?’?"?14- -2 = Qi

S =3 A -3 4% 1-1 =5

1

T pessS e (4)

~> E.b"""'tdn—- 7(( /14:£'Z. v (1)
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/I ‘“‘V‘—ll'l(c, . /’ e

= A" (4
= X =

Ax='>\x , X4 O => ATlx ="k (6.3)

Rule of thumb:

A1 has the same eigenvector x as A — but for the eigenvalue \~' instead of \.

We simply get:
spec(A™) = {A': )\ € spec(A)}.

Of course, A\7! is always well-defined since \ # 0. ( /4 (v <_> 0 ¢ "f’ C ( A))

Example 6.36. Let A = (‘;’ g)

N A_(“Q l;) s /f":_/’__.d_l’>

M(A) ~c 4

(B )Y
%) and

This matrix has the eigenvalues 1 = /4 and py = 1 and the eigenvectors x; = (1
x = (1) — —
~1

Akt Spec(A) = JoAf
Peeld) = 14,45

We do not have to stop here. We can multiply A~! again from the left to equation (6.3)
and, doing this repeatedly, we get

A7%x = A%k, A73x = 273, etc.,

where A™™ means (A=)
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Ay;’/\xl Y+ 0 :> A"x = \"x for all m € Z.

Of course, if we can also expand it to linear combinations ..., A=2 A~1 A0 Al A%
which shows that our spectral mapping theorem is only a special case of a more general

one.

6.7 Diagonalisation — the optimal coordinates

We startet this chapter with a two-dimensional picture. Now, we again revisit the 2 x 2-
example A = (3 2). We know that \; =4 and Ay = 1 are the eigenvalues with associated

12
] l~ '
J& -“»ehkv

eigenvectors x; = (f) and x, = (_11)

ye S

S 2

| Optimal coordinates for A
/

By using forru € R? the linear combination u = a1X; + Xy with coefficients
ag, a0 € R we get

Au = A(alxl aF O[2X2) =1 (AXl) + &Q(AXQ) = &1(4X1) + OQ(].XQ) = 40{1X1 + 10{2X2.

The component in x;-direction, which is «a, is scaled by the factor \; = 4, and the
Xg-component «y is scaled by the factor Ay = 1.

Aeo 4606 Aobo
A \Ww == (‘f’ O(/l X',' + /’ °<L KL




20 6 FEigenvalues and similar things

Steebh 7‘:.4[,, ((

T

/7\ —
J/"'J‘:A J‘;cAy 4
éf/-\-(_l‘LL')‘L ")lL':; A€q:“<h

~D Dy MEC (cnhd il oy wligl,

’\""'> )(4, e X €.£w CorrtJ‘rp.._,L'.j 4.:7«._\5(,/&5‘

v q."“""‘"‘ ’70“1{.\,-
Ax) = Xy, ..., Ax, = \Xx,. (6.4)

This is what we can put together into a matrix equation:

A X|1...X|n = AlxlALn
| | |
—_————
A
(6:4) )\1|X1 )\nlxn = X|1 Xln ' ,
| | I An

v~

or in short: AX = XD. This means that A is similar to a diagonal matrix if 22, is
invertible.

X iww—/‘“«. -‘=> )—(-,;4)(:9

Choor v:(iﬂ)e@h ://(AX)V _ G(‘D)v:< id

L i,

"

/4(&,,)(,\*.-.4 okhx“\ = )4- ¥, ¢ - 4 )\Lxh-x”
\-’W

w Uu-= °(45(4+°(ka
—




/l W U 0‘4 }\4 o,
acls & : RSN ‘
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b h e
Swil .
| Diagonalisation of A | (C"/ o/ ah) M"‘>‘) (’(4 oo %)) baxis of &yaumcdl,,
| | Canonical basis Shevd.rt
Choose X = X|1 Xln and Ind
At & A I I
D = . Then: (
An i
AX = XD. (6.5) (V2
X! X~ X-
. . . —1 . .
Multiplication £6.5)-X gives: hee g d
e )QD}/:I)&(;)
— afl D. )\1061
and in the same ways X 1-(6.5) >
gives: (0% AnQip,
gy’ A0 — 0 Coordinates w.r.t. basis (X1, ...,X,)
9.’ 7 j’ | A - -4 -1
/] :(XCDX ) = XDX X XDX XDX --- XDX
— - A7 - - - - = =

The important question “Is that even possible?” is equivalent to the following:

e Can we write allu € C" as agyx1 + ... + a,X,

Span(xy,...,x,) = C"?
Is (x1,...,%,) a basis of C"?
Is X invertible?

Definition 6.37. Diagonalisability

A square matriz/A € C™*™ is called diagonalisable if one can find n different eigen-

vectors Xy, ...,%X, € C" that form a basis of C™.
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1
02
form a basis of C?. Hence, A is diagonalisable.

Example 6.38. (a) The matrix A = (

has e; and ey as eigenvectors and they

(b) The matrix B = (1 1) has (1) and (}) as eigenvectors and they form a basis of

0 2 0
C?. Hence, B is diagonalisable.
(c) The matrix C' = (1) }) has only eigenvectors in direction ((1)) and they cannot

form a basis of C2. Hence, C' is not diagonalisable.

Choosing a basis consisting of eigenvectors, we know that A acts like a diagonal matrix.

Proposition 6.39. Different eigenvalues = linearly ind. eigenvectors

If My ..., A\ are k different eigenvalues of A, then each family (x1,...,Xx) of cor-

responding eigenvectors is linearly independent.

Roc - PJ (7‘4) n E{j(al) = Jo} /\/>

A+

Ar“"'\)—

\

M; = (XM X, ) S indep.
Tokethin .

over Ik

~

6"-1’! Caxe

Corollary 6.40. n different eigenvalues = diagonalisable

—

If A € C**™ has n different eigenvalues, then A is a diagonalisable.

Proof. A linearly independent family of n eigenvectors forms a basis for C".
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Example 6.41. (a) A = (}7) has eigenvalues \; = 4 and Ay = 1. Corollary 6.40
tells us that A is diagonalisable. We also verify this by looking at the eigenvectors
x; = () and x, = (), which form a basis of C2. Hence, (}2) = A = XDX ! =
2 1\(40y/2 1\
GGG o)
(b) The 90°-rotation A = Q _&) has eigenvalues A\; 5 = £i. From A — \; 1 = (T' ;) we
conclude the eigenvectors x; = (1) and xy = (}), which span C2.

Ker(A-cd) = ke (1 "')I;Ik"(hi )= (())

A ‘(: o 0

k'-r (/d{cd_) .- v

n

X( S Al
) (*
@/)_(C_D_X_A/ D; )

Hence, (9 ) =A=XDX"!= (Y (('J 2 1i)71. X and D are strictly complex,

while A is a real matrix.

(c) Look at the 3 x 3 matrices:

4 0 O 8 8 4
A= 1 6 3 and B=1[|-1 2 1
-2 —4 =2 -2 —4 =2

If you calculate the characteristic polynomials, you find . oL (l(-) = 1

Pa(A) = —X + 8 — 16X —AW
(o) =1

and, hence, the same eigenvalues \;y = 0, Ay =4 and \3 = 4.

——

For A, the eigenspaces are:

Ker(A — \1) = Span( (—21)) and Ker(A — A1) = Span((—zl) A (:21)),

However for B, the eigenspaces are 6 (‘v) =1

for A
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/](‘f):/]
0

Ker(B — \1) = Span( (—21)) and Ker(B — \1) = Span((—?)l)).

While A has three different directions for eigenvectors and is diagonalisable, the matrix
B has for Ay 3 = 4 only one direction for eigenvectors. There are too few vectors for
a basis and B is not diagonalisable.

(d) Let A= (}7).

10

> 4.4

A{:?*ha(l‘r»‘(c I 9

I
N\
)
(o)
N

A= xox7=(29) &

| Reminder: Algebraic and geometric multiplicity

For each eigenvalue \ of A we consider
e the algebraic multiplicity of A\, denoted by a(\), given by the multiplicity of A
as zero of pa, and

e the geometric multiplicity of A\, denoted by y()), given by the dimension of
the eigenspace Ker(A — A1).

For A from Example 6.41 (c), we find «(0) =1 = ~(0), @(4) = 2 = v(4).
For B from Example 6.41 (c), we get a(0) =1 =~(0); a(4) =2 # 1 = v(4).

Proposition 6.42. Algebraic vs. geometric multiplicity

Let A € C™ " be a square matriz, and let A\1,...,\p € C be all eigenvalues of A
(not counted with multiplicities). Then:

(a) a(A1) + ...+ a(Ar) =n.
(b) For alli=1,... .k, we have 1 < y()\;) < a(\).

Therefore, the following claims are equivalent:
(a) A is diagonalisable,

(o) ¥(A1) + ... + (X)) =m0,

(c) v(N) = a(N) foralli=1,... k.

Proof. Exercise. m

Lok .
( LJW) Aa)nd:ﬁx,.-t.,t, => CL.Av y@:) = x(2;) for wtt:
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/4 = /lx Sc({mjja,-nlr

For symmetric or selfadjoint matrices, we can improve Proposition 6.39 even more:

Proposition 6.43. A=A*: orthogonal eigenvectors

Let A € C™" be selfadjoint, which means A = A*, and let \,\' € C be two
different eigenvalues of A with corresponding eigenvectors x and X', respectively.

Then x L x". (W. 4 e SM;-J Cmtmer pn»ld-o(' en C° )

Proof. Since (x, \'x’) (2 Nx,x) = N{x/,x) =N (¥, x) DY (x,x’), we have

Ax, X) = (Ax, X)) = (Ax, x') "= (x, AX) = (x, Nx) 2 Vix, x') T N (x, x)

and, hence, (A — X)(x,x’) = 0. This means that the second factor has to be zero. O

| Proposition 6.44. A=A*: diagonalisable - ONB of eigenvectors

Let A € C™" be selfadjoint, which means A = A*. Then A is diagonalisable, where

there is an ONB (Xy,...,X,) for C" consisting of eigenvectors of A. The matriz
X
Sx. =X, %D = i | |

XJ v < J> J«:) X = [ x4 X,

is unitary, i.e. X! = X*. Therefore, we have:

A= XDX V'=XDX* and D=XTAX £ X*AX . (6.7)

‘/> in a:h
Sketch of proof. Use Proposition 6.43 and Gram-Schmidt for each eigenspace to find an
ONB of C". Then X*X =1 and also X* = X1, O

Actually, we could generalise the Proposition from above and equation (6.7). It holds if
and only if the matrix A is normal (i.e. AA* = A*A).
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Proposition 6.45.

For a diagonalisable A € C™" let- A, ..., A\, be the eigenvalues counted with algeb-
raic multiplicities. Then

det(A) = [[ A and (A) =) N,
=l =1

where tr(A) =3 "

=1 @jj s the sum of the diagonal, the so-called trace of A.

Proof. Exercise! m

Remark:

Later, we will see that the result of Proposition 6.45 actually holds for all matrices
A e Cmm,

6.8 Some applications

Here, we look at some of very many possible applications.

_I Rotation of boxes |

A box of the size 10cm x 20cm x 30cm rotates around a axis given by the vector
w € R3. The whole box has a angular momentum L € R3.

L s given by a linear equation using w, which means
L=Jw

with a symmetric matriz J € R3*3 which is called
the inertia tensor of the box. The rotation “wobbles”
of L, which means/.]*u, 1s not parallel to the rotation
axis w. Of coursey/we have three special rotation axes
giwen by the eiggnvectors of J. They are called the
principal axes of| the box.

|

dtid. mALn.AW Q") /l-u{ z‘bavc.‘»,—
o2 J("“ u}b\.\mkgr
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|

Curves and areas |

Which points x = ( ) € R? satisfy the equation 3> 4+ 2v/3xy + y> + & — /3y = 272

Solution: Rewrite tﬁe equation as a vector-matrixz equation ———mo D
2 = 32% + 2V3ey + 17 + = — V3y = (& 1) ( y ‘/g) (x) +(1 —/3) <x)

1 € vy
xT  N——— =:bT
—A (:AT) X X

and diagonalise the symmetric matriv A: \y =4, Ay =0, x1 = %
3 V3 v 1(V3 =1\ (4 \1/V3 1
=A=XDX"=XDX" == — .
(\/é 1 > 2 ( 1 V3 0)2\~-1 V3
—_——
X D XT

Then we get 2 = xT Ax+bTx = xT(XDXT)x+b"x = (x* X)D(XTx)+b? X (XTx).
Setting (Z) =u:=XTx= %(_\{g\/lg) (z) simplifies the equation to

2 = u"Du+ b Xu = (u v) (4 o) (Z) +(0 -2) (Z) = 4u? — 0.

bT X

The more complicated equation from above looks at lot
simpler in the “optimal” (x1,X3)-coordinate system:

2 = 4u? — 2u, also v=2u?—-1,

There you itmmediately see that it is a parabola. The
transformation we did, (Z) =X > (Z) =u= XTx,
was just a rotation by 30°.
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A simple criterion for definiteness

n =2 det(A) = )\1)\2.
e det(A) > 0 = ecigenvalues have the same sign = A (pos. or neg.) definite. If
ay; = e?Ael > 0, then pos., otherwise neg. definite.

e det(A) < 0 = A indefinite

In general: A symmetric A is positive definite if all left upper subdeterminants are positive.

Summary

e All matrices A we considered here were square matrices.

e A vector x # o, which A only scales, which means Ax = \x, is called an eigenvector;
the corresponding scaling factor A is called an eigenvalue. The set of all eigenvalues
of A is called the spectrum.

e )\ is an eigenvalue of A if and only if (A — A1)x = o has non-trivial solutions x # o
(namely the eigenvectors). This is fulfilled if and only if det(A — A1) = 0.

e For A € C™", we define p4(A) := det(A — A1), the characteristic polynomial of A,
which is a polynomial of degree n in the variable A. It has exactly n complex zeros:
the eigenvalues of A.

e The eigenvalues A are in general complex numbers, also the eigenvectors are complex
x € C". All matrices should be considered as A € C™*".

e Also in C", we can define inner products. Here, we only use the standard inner
product (x,y), defined by 171 + -+ + 2,¥,. Hence we get a new operation for
matrices: A* := AT = (a;;). It satisfies (Ax,y) = (x, A*y) for all x,y.

e Checking eigenvalues: Product of all eigenvalues of A is equal to det(A); the sum is
equal to tr(A).
e The matrix A is invertible if and only if all eigenvalues are nonzero.

e The eigenvalues of a triangular matrix are the diagonal entries. The eigenvalues of
a block matrix in triangular form are given by the eigenvalues of the blocks on the
diagonal.

e The eigenvalues of A™ are given by the eigenvalues of A to the power of m where
m € Z. The eigenvectors stay the same as for A. For example, 3A'" — 243 4 5476
has the eigenvalues 3A7 — 2\3 4+ 5017 where \ goes through all eigenvalues of A.
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The eigenvectors still stay the same.

e A is called diagonalisable if it can be written as XDX ™!, where D is a diagonal
matrix consisting of eigenvalues of A and X gets eigenvectors in the columns. This
only works if there are enough eigenvectors directions such that X is invertible.

e A is diagonalisable if and only if for all eigenvalues A the algebraic multiplicity of A
is the same as the geometric multiplicity.

o [f A = A* then A is diagonalisable and the eigenvalues are real and eigenvectors
can be chosen to be orthonormal.

Wﬂ/ N@w %(/\r I



