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Definition 6.8.
If the same eigenvalue λ appears α(λ) times in this factorisation, we say:

λ has algebraic multiplicity α(λ) .

• If we have k different eigenvalues λ1, . . . ,λk ∈ C, then α(λ1) + · · · + α(λk) = n,
because polynomials of degree n can be factorised into n linear factors.

• If λ is an eigenvalue, then A− λ1 is singular, so γ(λ) := dim(Ker(A− λ1)) ≥ 1.

Proposition 6.9. Spectrum for triangular matrices

Let A ∈ Rn×n be a square matrix.

(a) For a matrix in triangular form

A =




a11 a12 · · · a1n
0 a22 a2n
... . . . . . . ...
0 · · · 0 ann


 ,

we get spec(A) = {a11, a22, . . . , ann}.

(b) For a square block matrix in triangular form

A =

�
B C
0 D

�

with square matrices B and D, we get spec(A) = spec(B) ∪ spec(D).

(c) Also spec(A) = spec(AT ). Hence (a) and (b) also hold for lower triangular
matrices.

Proof.

VL15
↓
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Example 6.10. We give some examples for Proposition 6.9.

(a) spec




1 2 3 4
5 6 7

8 9
10


 = {1, 5, 8, 10}

(b) spec




1 2 3 4 5
6 7 8 9

10
11 12
13 14 15




= spec

�
1 2

6

�
∪ spec



10
11 12
13 14 15


 = {1, 6, 10, 12, 15}

(c) spec




1 2 3 4 5 6
7 8 9 10 11

12
13 14
15 16 17 18
19 20 21




= spec

�
1 2

7

�
∪ spec




12
13 14
15 16 17 18
19 20 21




= spec

�
1 2

7

�
∪ spec

�
12
13 14

�
∪ spec

�
17 18

21

�
= {1, 7, 12, 14, 17, 21}

Remark:

The characteristic polynomial for A ∈ Rn×n is of the following form

pA(λ) = (−1)nλn + tr(A)(−1)n−1λn−1 + · · ·+ det(A) , (6.1)

where tr(A) :=
�n

j=1 ajj is the sum of the diagonal, the so-called trace of A.

6.3 Complex matrices and vectors
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Definition 6.11. Complex matrices

For m,n ∈ N, the set of all m× n matrices with entries in C is denoted by Cm×n.
Analogously, Cn denotes the set of all (column-)vectors with n entries in C.

Proposition 6.12. Properties of the vector space Cn

The set V = Cn with the addition + and scalar multiplication · fulfils the following:

(1) ∀v,w ∈ V : v +w = w + v (+ is commutative)
(2) ∀u,v,w ∈ V : u+ (v +w) = (u+ v) +w (+ is associative)
(3) There is a zero vector o ∈ V with the property: ∀v ∈ V we have v + o = v.
(4) For all v ∈ V there is a vector −v ∈ V with v + (−v) = o.
(5) For the number 1 ∈ C and each v ∈ V , one has: 1 · v = v.
(6) ∀λ, µ ∈ C ∀v ∈ V : λ · (µ · v) = (λµ) · v (· is associative)
(7) ∀λ ∈ C ∀v,w ∈ V : λ · (v +w) = (λ · v) + (λ ·w) (distributive ·+)
(8) ∀λ, µ ∈ C ∀v ∈ V : (λ+ µ) · v = (λ · v) + (µ · v) (distributive +·)

Definition 6.13. Subspaces in Cn

A nonempty subset U ⊂ Cn is called a (linear) subspace of Cn if all linear combin-
ations of vectors in U remain also in U . This means:

(1) o ∈ U ,

(2) u ∈ U , λ ∈ C =⇒ λu ∈ U ,

(3) u,v ∈ U =⇒ u+ v ∈ U .

Definition 6.14. Span

Let M ⊂ Cn be any non-empty subset. Then we define:

Span (M) := {λ1u1 + · · ·+ λkuk : u1, . . . ,uk ∈ M , λ1, . . . ,λk ∈ C , k ∈ N} .

This subspace is called the span or the linear hull of M . For convenience, we define
Span(∅) := {o}.
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Definition 6.15. Linear dependence and indepedence

A family (v1, . . . ,vk) of k vectors from Cn is called linearly dependent if we find a
non-trivial linear combination for o. This means that we can find λ1, . . . ,λn ∈ C
that are not all equal zero such that

k�

j=1

λjvj = o .

If this is not possible, we call the family (v1, . . . ,vk) linearly independent. This
means that

k�

j=1

λjvj = o ⇒ λ1, . . . ,λk = 0

holds.

Definition 6.16. Basis, basis vectors

Let V be a subspace of Cn. A family B = (v1, . . . ,vk) is called a basis of V if

(a) V = Span(B) and

(b) B is linearly independent.

The elements of B are called the basis vectors of V .

Even in the complex vector space Cn, we are able speak of geometry when endowing the
space with an inner product. We try to generalise what we know from the complex plane
C and the real vector space Rn.

Definition 6.17. Inner product in Cn

For the vectors

u =



u1...
un


 , v =



v1...
vn


 ∈ Cn the number �u,v� := u1v1 + ...+ unvn =

n�

i=1

uivi

is called the (standard) inner product of u and v. Moreover, we define the real
number

�v� :=
�

�v,v� =
�

|v1|2 + . . .+ |vn|2

and call it the norm of v.
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Attention!
In some other books, you might find an alternative definition of the standard inner
product in Cn where the first argument is the complex conjugated one.

Note that �v,v� is always a real number with ≥ 0 such it gives us indeed a length. Again,
we find the important property: �v,v� = 0 if and only if v = o.

Hence,
�
�v,v� is well-defined and the norm � · � has the same properties as in Rn, see

Proposition 6.19 below.

Proposition 6.18.

The standard inner product �·, ·� : Cn×Cn → C fulfils the following: For all vectors
x,x�,y ∈ Cn and λ ∈ C, one has

(S1) �x,x� > 0 for x �= o, (positive definite)
(S2) �x+ x�,y� = �x,y�+�x�,y�, (additive)
(S3) �λx,y� = λ�x,y�, (homogeneous)

�
(linear)

(S4) �x,y� = �y,x�. (conjugate symmetric)

Proposition 6.19. Norm

The norm � · � : Cn → R defined by using the standard inner product satisfies for
all x,y ∈ Cn and α ∈ C:

(N1) �x� ≥ 0, and �x� = 0 ⇔ x = o, (positive definite)
(N2) �αx� = |α| �x�, (absolutely homogeneous)
(N3) �x+ y� ≤ �x�+ �y�. (triangle inequality).



12 6 Eigenvalues and similar things

Proposition & Definition 6.20. Adjoint matrix

For a given matrix

A =




a11 · · · a1n
...

...
am1 · · · amn


 ∈ Cm×n, the matrix A∗ := AT =



a11 · · · am1
...

...
a1n · · · amn


 ∈ Cn×m

is called the adjoint matrix of A. It is the uniquely determined matrix that fulfils
the equation

�Ax,y� = �x, A∗y�
for all x ∈ Cn and y ∈ Cm.

In analogy to Proposition 6.9 (c), we get the following for complex matrices:

Proposition 6.21. Spectrum of A∗

For all A ∈ Cn×n, we have spec(A∗) = {λ : λ ∈ spec(A)}.

Some important notions:

Definition 6.22.

A complex matrix A ∈ Cn×n is called
• selfadjoint if A = A∗ (complex version of “symmetric”),
• skew-adjoint if A = −A∗ (complex version of “skew-symmetric”),
• unitary if AA∗ = 1 = A∗A (complex version of “orthogonal”),
• normal if AA∗ = A∗A.

Beispiel 6.23. (a) A =

�
1 2i

−2i 0

�
⇒ A∗ =

�
1 −2i
2i 0

�
=

�
1 2i

−2i 0

�
= A

(b) A =

�
i −1 + 2i

1 + 2i 3i

�
⇒ A∗ =

�
i 1 + 2i

−1 + 2i 3i

�
=

�
−i 1− 2i

−1− 2i −3i

�
= −A

(c) A =

�
1 + i 3− 2i
2i −1

�
⇒ A∗ =

�
1 + i 2i
3− 2i −1

�
=

�
1− i −2i
3 + 2i −1

�
�∈ {A,−A}



6.4 Eigenvalues and similarity 13

If A ∈ Cn×n is a real matrix, i.e. aij ∈ R for all i, j, then we get:

adjoint matrix A∗ = transpose matrix AT ,
selfadjoint = symmetric,

skew-adjoint = skew-symmetric,
unitary = orthogonal.

Proposition 6.24. Where are the eigenvalues?

(a) If A∗ = A (selfadjoint), then all eigenvalues of A lie on the real line.

(b) If A∗ = −A (skewadjoint), then all eigenvalues of A lie on the imaginary axis.

(c) If A∗A = 1 (unitary), then all eigenvalues of A lie on the unit circle in C.

6.4 Eigenvalues and similarity

Definition 6.25. Similarity

Two matrices A,B ∈ Cn×n are called similar if there is an invertible matrix S ∈ Cn

with A = SBS−1.

Proposition 6.26.

Similar matrices have the same characteristic polynomial and thus the same eigen-
values.
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Remark:

Later, we will see that any matrix A ∈ Cn×n is similar to a triangular matrix.

6.5 Calculating eigenvectors

Even for matrices A ∈ Rn×n, we now consider the eigenvalues in C and the eigenvectors
in Cn. This means that we now consider all square matrices as matrices in Cn×n.

Example 6.27. Consider A ∈ R2×2 with A =

�
0 −1
1 0

�
. Then pA(λ) = λ2 + 1 and

spec(A) = {−i, i}.
The corresponding map fA : R2 → R2 rotates e1 and e2, and hence any vector in R2,
by an angle of π

2
(or 90◦) in positive sense. In this sense, no line is sent to itself again.

However, this is only a problem if we look at the “real” picture.

Proposition 6.28. Spectrum is not empty

For a square matrix A ∈ Cn×n holds:

(a) spec(A) �= ∅.

(b) A is invertible if and only if 0 �∈ spec(A).

Looking at Proposition 6.4, we see what we have to do in order to calculate the eigenvectors
of a given matrix A if we already know the eigenvalues λ:
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Definition 6.29. Eigenspace

The solution set of the LES (A−λ1)x = o, which means Ker(A−λ1), is called the
eigenspace with respect to the eigenvalue λ and denoted by Eig(λ). Each nonzero
vector x ∈ Eig(λ) \ {o} is an eigenvector w.r.t. the eigenvalue λ.

Example 6.30. Consider A =
�
3 2
1 2

�
: xi �= o is an eigenvalue for λi with i ∈ {1, 2} if

Axi = λixi, i.e. (A− λi1)xi = o.

Hence, we have to solve the LES (A− λ11)x1 = o and (A− λ21)x2 = o.

λ1 = 4 : A− λ11 =

�
3− λ1 2

1 2− λ1

�
=

�
−1 2
1 −2

�
,

(A− λ11)x1 = o

In the same manner:

λ2 = 1 : A− λ21 =

�
3− λ2 2

1 2− λ2

�
=

�
2 2
1 1

�
,

(A− λ21)x2 = o

Definition 6.31. Multiplicities

Let A ∈ Cn×n be square matrix. Then the characteristic polynomial can be written
as:

pA(z) = (λ1 − z)α1 · (λ2 − z)α2 · · · (λk − z)αk (6.2)
where λ1, . . . ,λk are pairwise different. The natural number αj above is called:

α(λj) := αj algebraic multiplicity of λj

and tells you how often the eigenvalue λj occurs in the characteristic polynomial.
We also define

γ(λj) := dimEig(λj) = dim(Ker(A− λj1)) geometric multiplicity of λj


