Definition 6.8.

If the same eigenvalue λ appears $\alpha(\lambda)$ times in this factorisation, we say:

 λ has algebraic multiplicity $\alpha(\lambda)$.

- If we have k different eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$, then $\alpha(\lambda_1) + \cdots + \alpha(\lambda_k) = n$, because polynomials of degree n can be factorised into n linear factors.
- If λ is an eigenvalue, then $A \lambda \mathbb{1}$ is singular, so $\gamma(\lambda) := \dim(\operatorname{Ker}(A \lambda \mathbb{1})) \ge 1$.

Proof.

VL15

Example 6.10. We give some examples for Proposition 6.9.

(a) spec
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 \\ 10 \\ 11 & 12 \\ 13 & 14 & 15 \end{pmatrix}$$
 = spec $\begin{pmatrix} 1 & 2 \\ 6 \\ 12 \\ 13 & 14 & 15 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 13 \\ 14 & 15 \end{pmatrix}$ = $\{1, 6, 10, 12, 15\}$
(b) spec $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 11 & 12 \\ 13 & 14 & 15 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 13 & 14 & 15 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 13 & 14 & 15 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 13 & 14 & 15 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 & 12 & 12 \\ 2 & 12 & 12 \end{pmatrix}$ = spec $\begin{pmatrix} 1 & 2 & 12 & 12 \\ 2 & 12 & 12$

- 6.3 Complex matrices and vectors
 - ~> $spec(A) \subset \mathbb{C}$ ~> Consider x∈ \mathbb{C}^n and $A \in \mathbb{C}^{h \times n}$

Attention!

In some other books, you might find an alternative definition of the standard inner product in \mathbb{C}^n where the first argument is the complex conjugated one.

Note that $\langle \mathbf{v}, \mathbf{v} \rangle$ is always a real number with ≥ 0 such it gives us indeed a length. Again, we find the important property: $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{o}$.

```
  ||\cdot||: \mathbb{C}^{n} \longrightarrow \mathbb{R} \longrightarrow (\mathbb{N}^{n}), (\mathbb{N}^{2}), (\mathbb{N}^{3})
```

Hence, $\sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$ is well-defined and the norm $\|\cdot\|$ has the same properties as in \mathbb{R}^n , see Proposition 6.19 below.

$$\langle A_{x,\gamma} \rangle = \sum_{k \neq 4}^{1} (A_{x})_{k} \overline{y_{k}}$$

12

6 Eigenvalues and similar things

Proposition & Definition 6.20. Adjoint matrix
For a given matrix

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{C}^{m \times n}, \text{ the matrix } A^* := \overline{A^T} = \begin{pmatrix} \overline{a_{11}} & \cdots & \overline{a_{m1}} \\ \vdots & & \vdots \\ \overline{a_{1n}} & \cdots & \overline{a_{mn}} \end{pmatrix} \in \mathbb{C}^{n \times m}$$
is called the adjoint matrix of A . It is the uniquely determined matrix that fulfils the equation
$$\langle A\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, A^* \mathbf{y} \rangle$$
for all $\mathbf{x} \in \mathbb{C}^n$ and $\mathbf{y} \in \mathbb{C}^m$.

In analogy to Proposition 6.9 (c), we get the following for complex matrices:

Proposition 6.21. Spectrum of A^t
For all
$$A \in \mathbb{C}^{n \times n}$$
, we have $\operatorname{spec}(A^*) = \{\lambda; \lambda \in \operatorname{spec}(A)\}$.
Proof: $\operatorname{det}(A^* - A \oplus A) = \sum_{r \in P_n} s_{P^*}(r) \prod_{i=4}^n (A^*)_{r(s_i), i} \cdot \widehat{A} \cdot \widehat{s}_{r(s_i), i} \cdot \widehat{s}_$

6.5 Calculating eigenvectors

Even for matrices $A \in \mathbb{R}^{n \times n}$, we now consider the eigenvalues in \mathbb{C} and the eigenvectors in \mathbb{C}^n . This means that we now consider all square matrices as matrices in $\mathbb{C}^{n \times n}$.

Example 6.27. Consider $A \in \mathbb{R}^{2\times 2}$ with $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then $p_A(\lambda) = \lambda^2 + 1$ and $\operatorname{spec}(A) = \{-i, i\}$.

The corresponding map $f_A : \mathbb{R}^2 \to \mathbb{R}^2$ rotates \mathbf{e}_1 and \mathbf{e}_2 , and hence any vector in \mathbb{R}^2 , by an angle of $\frac{\pi}{2}$ (or 90°) in positive sense. In this sense, no line is sent to itself again. However, this is only a problem if we look at the "real" picture.

Proposition 6.28. Spectrum is not empty For a square matrix $A \in \mathbb{C}^{n \times n}$ holds: (a) $\operatorname{spec}(A) \neq \emptyset$. (b) A is invertible if and only if $0 \notin \operatorname{spec}(A)$. Proof: (a) Fundamental flooren of algebra (b) A is invertible $\Longrightarrow 0 = \det(A) = \det(A - 0.11) \Leftrightarrow 0 \in \operatorname{spec}(A)$

Looking at Proposition 6.4, we see what we have to do in order to calculate the eigenvectors of a given matrix A if we already know the eigenvalues λ :

Definition 6.29. Eigenspace

The solution set of the LES $(A - \lambda 1)\mathbf{x} = \mathbf{o}$, which means $\operatorname{Ker}(A - \lambda 1)$, is called the eigenspace with respect to the eigenvalue λ and denoted by $\operatorname{Eig}(\lambda)$. Each nonzero vector $\mathbf{x} \in \operatorname{Eig}(\lambda) \setminus \{\mathbf{o}\}$ is an eigenvector w.r.t. the eigenvalue λ .

For all
$$A \in \mathbb{C}$$
: $\underline{Eig(A)}$ is timen subspace
 $Eig(A) = \{oig(=) \mid A \text{ is } \underline{not} \text{ an } uignumbre}$

Example 6.30. Consider $A = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$: $\mathbf{x}_i \neq \mathbf{o}$ is an eigenvalue for λ_i with $i \in \{1, 2\}$ if $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$, i.e. $(A - \lambda_i \mathbb{1})\mathbf{x}_i = \mathbf{o}$.

Hence, we have to solve the LES $(A - \lambda_1 \mathbb{1})\mathbf{x}_1 = \mathbf{o}$ and $(A - \lambda_2 \mathbb{1})\mathbf{x}_2 = \mathbf{o}$.

$$\underline{\lambda_1 = 4}: \quad A - \lambda_1 \mathbb{1} = \begin{pmatrix} 3 - \lambda_1 & 2\\ 1 & 2 - \lambda_1 \end{pmatrix} = \begin{pmatrix} -1 & 2\\ 1 & -2 \end{pmatrix},$$
$$(A - \lambda_1 \mathbb{1})\mathbf{x}_1 = \mathbf{o}$$

In the same manner:

$$\underline{\lambda_2 = 1}: \quad A - \lambda_2 \mathbb{1} = \begin{pmatrix} 3 - \lambda_2 & 2\\ 1 & 2 - \lambda_2 \end{pmatrix} = \begin{pmatrix} 2 & 2\\ 1 & 1 \end{pmatrix},$$
$$(A - \lambda_2 \mathbb{1})\mathbf{x}_2 = \mathbf{o}$$

Definition 6.31. Multiplicities

Let $A \in \mathbb{C}^{n \times n}$ be square matrix. Then the characteristic polynomial can be written as:

$$p_A(z) = (\lambda_1 - z)^{\alpha_1} \cdot (\lambda_2 - z)^{\alpha_2} \cdots (\lambda_k - z)^{\alpha_k}$$
(6.2)

where $\lambda_1, \ldots, \lambda_k$ are pairwise different. The natural number α_j above is called:

$$\alpha(\lambda_j) := \alpha_j$$
 algebraic multiplicity of λ_j

and tells you how often the eigenvalue λ_j occurs in the characteristic polynomial. We also define

 $\gamma(\lambda_j) := \dim \operatorname{Eig}(\lambda_j) = \dim(\operatorname{Ker}(A - \lambda_j \mathbb{1}))$ geometric multiplicity of λ_j