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Eigenvalues and similar things

Consider again a square matrix A ∈ Rn×n and the associated linear map fA : Rn → Rn

which maps Rn into itself.

Question:

Are there vectors v which are only scaled by fA? This means that they satisfy:

Av = λv or equivalently (A− λ1)v = o

• λ is called eigenvalue of A,

• v is called eigenvector of A (if v �= o).

First conclusions:

• Not very interesting (trivial): v = o.

• v ∈ Ker(A) \ {o} ⇒ Av = 0v, so λ = 0.

• v ∈ Ker(A− λ1) \ {o} ⇒ Av = λv, so λ is an eigenvalue.

• v eigenvector ⇒ αv is also an eigenvector (for α �= 0).
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6.1 What is an eigenvalue and an eigenvector?

We start with an illustration in two-dimensional cases and consider a matrix

A =

�
a1 a2

�
∈ R2×2

and the associated linear map fA : R2 → R2 with x �→ Ax.

g1

g2

g3

e1

e2
x1 g�1

g�2
g�3 = g3

a1

a2fA

g1

g2
g4

e1

e2

x2

g�1

g�2

g�4 = g4

a1

a2fA
In the same sense, we can look
at the other quadrants of our
coordinate system. There we
also find such a special line:

g�4 := fA(g4) = g4.

Definition 6.1. Eigenvalue, Eigenvector, spectrum

Let A be a square matrix. A vector x �= o is called an eigenvector of A, if Ax is a
multiple of x. This scalar λ, which means Ax = λx, is called eigenvalue of A. The
set of all eigenvalues of A is called the spectrum of A and denoted by spec(A).
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This is very general definition and will work later for other cases in the same manner.
Here, we are first interested in matrices A ∈ Rn×n and eigenvalues λ ∈ R. However, you
may already see that this can also work for complex numbers. We may also include λ ∈ C
later.

Proposition 6.2. Multiple of eigenvector = eigenvector

Every multiple (not o) of an eigenvector x for A is also an eigenvector for A,
corresponding to the same eigenvalue λ.

Looking again at the pictures above:

• We have Ax = λ1x for all multiples x of x1 ∈ g3 (which means for all x ∈ g3).

• Also we have Ax = λ2x for all multiples x of x2 ∈ g4 (which means for all x ∈ g4).

• Looking at the line g3, the map fA acts like scaling with the factor λ1.

• Looking at the line g4, the map fA acts like scaling with the factor λ2.

Perfect coordinate system for the map fA

Describing R2 with a coordinate system given by the two lines g3 and g4 (instead of
g1 and g2), the acting of the map fA is very simple: The coordinate axes are only
stretched: The one with factor λ1, and the other one with factor λ2.
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To get this “perfect coordinate system” we need all the eigenvalues λ1, λ2 and the corres-
ponding eigenvectors x1 and x2.

Question:

(a) How to find the eigenvalues and the eigenvectors of A?

(b) Do you always find n eigenvalues for an n× n matrix A?

(c) Do you find n different directions for eigenvectors?

(d) How to change the coordinate system?

(e) What are applications for this?

6.2 The characteristic polynomial

Our goal is to find λ ∈ R and x �= o such that (A − λ1)x = o, i.e., (A − λ1) has a
nontrivial kernel. This means that the corresponding map for A−λ1 is not injective and,
hence, it is a singular matrix.

Idea:
Compute det(A − λ1), which yields a polynomial of degree n in λ and determine
its zeros, because

det(A− λ1) = 0 ⇔ A− λ1 is singular
⇔ Ker(A− λ1) is non-trivial
⇔ λ is an eigenvalue

Then, compute a basis for Ker(A− λ1) for each eigenvalue.
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Example 6.3.

A =

�
3 2
1 4

�

det(A− λ1) = det

�
3− λ 2
1 4− λ

�
= (3− λ)(4− λ)− 2 · 1 = 10− 7λ+ λ2

λ1,2 =
7±

√
49− 40

2
=

7± 3

2
⇒ λ1 = 2, λ2 = 5

Thus we have the eigenvalues λ1 = 2 and λ2 = 5. Let us compute the eigenvectors:

o = (A− 21)v =

�
1 2
1 2

��
v1
v2

�
=

�
v1 + 2v2
v1 + 2v2

�
⇒ v = α

�
2
−1

�

o = (A− 51)v =

�
−2 2
1 −1

��
v1
v2

�
=

�
−2v1 + 2v2
v1 − v2

�
⇒ v = α

�
1
1

�

Proposition 6.4. Five properties of an eigenvalue

For a square matrix A and a number λ the following is equivalent:

(i) λ is an eigenvalue A.

(ii) There is a vector x �= o with Ax = λx.

(iii) The space Ker(A− λ1) contains a vector x �= o.

(iv) The matrix A− λ1 is not invertible.

(v) det(A− λ1) = 0

Let A ∈ Rn×n. Then we observe that det(A− λ1) = pA(λ) is a polynomial of order n in
the variable λ. For example, there could be coefficients ci such that

pA(λ) = (−1)nλn + cn−1λ
n−1 + . . . c1λ+ c0 .
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Definition 6.5. Characteristic polynomial

For an n × n-Matrix A, the polynomial λ �→ det(A − λ1) is called the
characteristic polynomial of the matrix A and is denoted by pA.

Example 6.6. Look at A =

�
3 2
1 2

�
.

pA(λ) = det(A− λ1) = det
��3 2

1 2

�
− λ

�
1 0
0 1

��
= det

�
3− λ 2
1 2− λ

�

= (3− λ) · (2− λ)− 2 · 1 = 6− 3λ− 2λ+ λ2 − 2 = λ2 − 5λ+ 4

Solving the quadratic equation:

λ1,2 = −−5

2
±
�

25

4
− 4 =

5

2
±
�

9

4
=

5± 3

2
∈ {1, 4}, hence λ1 = 4, λ2 = 1.

Theorem 6.7. Fundamental theorem of algebra (Gauß 1799)

Let a0, a1, . . . , an ∈ C with an �= 0. Then the polynomial equation

anx
n + an−1x

n−1 + . . .+ a1x
1 + a0� �� �

=: p(x)

= 0

has n (not necessarily different) solutions x1, . . . , xn in C. Moreover, we find for
x ∈ C:

p(x) = an(x− x1)(x− x2) · · · (x− xn).
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Definition 6.8.
If the same eigenvalue λ appears α(λ) times in this factorisation, we say:

λ has algebraic multiplicity α(λj) .

• If we have k different eigenvalues λ1, . . . ,λk ∈ C, then α(λ1) + · · · + α(λk) = n,
because polynomials of degree n can be factorised into n linear factors.

• If λ is an eigenvalue, then A− λ1 is singular, so γ(λ) := dim(Ker(A− λ1)) ≥ 1.

Proposition 6.9. Spectrum for triangular matrices

Let A ∈ Rn×n a square matrix.

(a) For a matrix in triangular form

A =




a11 a12 · · · a1n
0 a22 a2n
... . . . . . . ...
0 · · · 0 ann


 ,

we get spec(A) = {a11, a22, . . . , ann}.

(b) For a square block matrix in triangular form

A =

�
B C
0 D

�

with square matrices B and D, we get spec(A) = spec(B) ∪ spec(D).

(c) Also spec(A) = spec(AT ). Hence (a) and (b) also hold for lower triangular
matrices.

Proof.


