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5.3 Orthonormal systems and bases

For some applications it it very useful to have a set of vectors {u1 . . .uk} ⊂ Rn which are
mutually orthogonal:

i �= j ⇒ ui ⊥ uj ⇔ �ui,uj� = 0

and have unit norm:
�ui� =

�
�ui,ui� = 1.

Using the Kronecker symbol:

δij =

�
1 : i = j
0 : i �= j

we may write this in short:
�ui,uj� = δij .

Definition 5.20. OS, ONS, OB, ONB

Let U be a linear subspace of Rn. A family F = (u1, . . . ,uk) consisting of vectors
from U is called:

• Orthogonal system (OS) if the vectors in F are mutually orthogonal:
�ui,uj� = 0 for all i, j ∈ {1, . . . , k} with i �= j;

• Orthonormal system (ONS) if �ui,uj� = δij for all i, j ∈ {1, . . . , k};
• Orthogonal basis (OB) if it is an OS and a basis of U ;
• Orthonormal basis (ONB) if it is an ONS and a basis of U .

If F is an ONB, then the Gram matrix G(F) is the identity matrix and projections are
very easily calculable.

Example 5.21. Let �·, ·� = �·, ·�eukl the standard inner product.

(a) The canonical unit vectors

e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T
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in Rn define an ONB for U = Rn.

(b) The family F = (u1,u2,u3) given by

u1 = (1, 0, 1)T , u2 = (1, 0,−1)T , u3 = (0, 1, 0)T

defines an OB of R3. We show this: We immediately have �u1,u3� = 0 and �u2,u3� =
0. Moreover, we find

�u1,u2� =
��1

0
1

�
,

�
1
0
−1

��
= 1 + 0− 1 = 0.

Hence, F is an OS. It remains to show that F is also a basis for R3. Since dim(R3) = 3
and F consists of three linearly independent vectors, we are finished. For showing the
linear independence, the next Proposition 5.22 will be always helpful.

(c) Normalising the vectors from (b), we obtain an ONB ( 1√
2
u1,

1√
2
u2,u3).

Proposition 5.22. An OS is linearly independent.

Let F = (u1, . . . ,uk) be an OS in Rn with ui �= o for i = 1, . . . , k. Then F is
linearly independent.

Proof. Let F be an OS. To show the linear independence of F , we only have to show that
α1u1 + . . .+ αkuk = o always implies α1 = . . . = αk = 0. Using the inner product for ui

with i = 1, . . . , k, we get:

0 = �o,ui� = �α1u1 + . . .+ αkuk,ui�
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Now we can show, how easy it is to calculate Gramian matrices with a basis that is
orthogonal.

Proposition 5.23. Gramian matrix for OB and ONB

The Gramian matrix G(B) for an OB B = (u1, . . . ,uk) is a diagonal matrix:

G(B) =




�u1,u1� �u2,u1� . . . �uk,u1�
�u1,u2� �u2,u2� . . . �uk,u2�

...
...

...
�u1,uk� �u2,uk� . . . �uk,uk�


 =




�u1�2 0

0 �u2�2 . . .
. . . . . . 0

0 �uk�2


 .

If B actually is an ONB, then we have G(B) = 1.

The orthogonal projection x U for a vector x ∈ Rn onto the linear subspace U =
Span(B) is then given by the coefficients

α1 =
�x,u1�
�u1�2

, α2 =
�x,u2�
�u2�2

, . . . , αk =
�x,uk�
�uk�2

for equation (5.5). We get:

x U =
�x,u1�
�u1�2

u1 + . . .+
�x,uk�
�uk�2

uk and x U⊥ = x− x U

If B is even an ONB, then all the denominators �ui�2 are equal to 1.
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Even if one is not interested in the projection, this can be helpful for calculating the
coefficients for the linear combination.

Corollary 5.24. Fourier expansion w.r.t. an OB or ONB

Let U be a linear subspace of Rn and B = (u1, . . . ,uk) an OB of U . Then the unique
linear combination for a vector x ∈ U with respect to B is given by:

x = α1u1 + . . .+ αkuk with αi =
�x,ui�
�ui�2

for all i ∈ {1, . . . , k}. (5.6)

This formula is called the Fourier expansion of x with respect to B, and the numbers
αi are called the associated Fourier coefficients. If B even is an ONB, then

αi = �x,ui� for all i = 1, . . . , k.

Note that in the case U = Rn, we simply set k = n.
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Remark: Gram-Schmidt orthonormalisation
Let U be a linear subspace of Rn and (u1, . . . ,uk) a basis of U. The following pro-
cedure will give us an ONB (w1, . . . ,wk) for U .

(1) Normalise the first vector:

w1 :=
1

�u1�
u1.

(2) Choose the normal component of u2 with respect to Span(w1)

v2 := u2 − �u2,w1�w1� �� �
u2

Span(w1)

and normalise it: w2 :=
1

�v2�
v2.

(3) Choose the normal component of u3 with respect to Span(w1,w2)

v3 := u3 −
�
�u3,w1�w1 + �u3,w2�w2

�

� �� �
u3

Span(w1,w2)

and normalise it: w3 :=
1

�v3�
v3.

...

(k) In the last step choose the normal component of uk w.r.t. Span(w1, . . . ,wk−1)

vk := uk −
k−1�

i=1

�uk,wi�wi

� �� �
uk

Span(w1,...,wk−1)

and normalise it: wk :=
1

�vk�
vk.
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Example 5.25. Let u1 = (1, 1, 0)T and u2 = (2, 0, 2)T be two vectors in R3 and U =
Span(u1,u2) the spanned plane. We calculate an ONB (w1,w2) for U . The first vector is

w1 :=
1

�u1�
u1 =

1√
2

�
1
1
0

�
.

For the second vector, we first need to calculate:

v2 := u2 − �u2,w1�w1 =

�
2
0
2

�
−
��2

0
2

�
,
1√
2

�
1
1
0

�� 1√
2

�
1
1
0

�
=

�
2
0
2

�
− 1

2
2

�
1
1
0

�
=

�
1
−1
2

�

Then v2 is getting normalised:

w2 :=
1

�v2�
v2 =

1√
6

�
1
−1
2

�
.

Now we have �w1� = 1 = �w2� and �w1,w2� = 0 and also Span(w1,w2) = U =
Span(u1,u2).

We recall Corollary 5.24: Why are such ONB helpful? Usually, if we want to write a
vector v as a linear combination of basis vectors B = (b1, . . . ,bk), we have to solve a
linear system:

v =
k�

i=1

λibi .

If we have an orthonormal basis B = (u1, . . . ,uk), then we can dispense with this. We
can simply calculate:

�v,ui� =
��

j

λjuj,ui

�
= λi�ui,ui� = λi.

Thus, each coefficient of the linear combination results from a simple inner product.

Remark: Outlook
It is this principle the so called Fourier-Transformation is built on. It decomposes a
signal v(t) into frequencies ui(t) = sin(ωit). This is, however, a problem formulated
in a more abstract vector space.
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5.4 Orthogonal matrices

Let us now restrict our attention to the standard inner product

�x,y� = �x,y�euklid = xTy,

and write down our results from above in terms of matrices.

Let B = (u1, . . . ,un) a basis for Rn. Then each x ∈ Rn can be uniquely written as:

x = α1


u1


+ . . .+ αn


un


 =


u1 · · · un




� �� �
=:A



α1...
αn




For the so-defined matrix A = (u1 · · ·un), we get:

ATA =




u1
T

...
un

T





u1 · · · un


 =



u1

Tu1 · · · u1
Tun

...
...

un
Tu1 · · · un

Tun




=



�u1,u1� · · · �un,u1�

...
...

�u1,un� · · · �un,un�


 = G(B), (5.7)

Definition 5.26. Orthogonal matrix

A matrix A ∈ Rn×n with the property ATA = 1 is called orthogonal.

We immediately see that an orthogonal matrix A has an ONB as columns and fulfils

�Ax, Ay� = �x,y�.

The last property says that the corresponding linear map fA preserves the inner product,
and thus angles and lengths.
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Proposition 5.27. Defining properties of orthogonal matrices

For a matrix A ∈ Rn×n the following claims are equivalent:

(a) A is an orthogonal matrix

(b) ATA = 1.

(c) AAT = 1.

(d) A−1 = AT .

(e) AT is an orthogonal matrix.

(f) The columns of A define an ONB of Rn.

(g) The rows of A define an ONB of Rn.

(h) For all x,y ∈ Rn, we get �Ax, Ay� = �x,y�.

(i) For all x ∈ Rn, we get �Ax� = �x�.

Proof. Exercise!

Such matrices correspond to maps of special geometric interest:

• Rotations

• Reflections

• Special case: permutation matrices

We also see that solving a LES Ax = b described by an orthogonal matrix A is easy to
solve:

x = A−1b = ATb

The inverse is computed now more easily than in the general case.

Proposition 5.28. Determinant of orthogonal matrices

For an orthogonal matrix A, we have det(A) = ±1.

Proof. 1 = det(1) = det(ATA) = det(AT ) det(A) = det(A)2.
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Definition 5.29. Rotations and reflections

Let A ∈ Rn×n be an orthogonal matrix. If det(A) = 1, we call A a rotation. If
det(A) = −1, we call the matrix a reflection.

Attention! Notions: Rotation or reflection

(a) Not every matrix A ∈ Rn×n with det(A) = 1 (or det(A) = −1) is a rotation (or
a reflection)!

(b) A “reflection” from Definition 5.29 could also be a point reflection in the case
n ≥ 3.
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5.5 Orthogonalisation: the QR-decomposition

There are at least three alternatives to compute this:

• “Classical Gram-Schmidt”: this is what we learn next (good for pen-and-paper com-
putations), but instable on the computer

• “Modified Gram-Schmidt”: equivalent to our Gram-Schmidt, order of loops ex-
changed, numerically more stable

• “Householder reflections”: are cheaper and even more stable. This is the method of
choice in numerical computations
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If A is square matrix with rank(A) = n, we get

A =


a1 · · · an




=

�
Q




r11
0
0
...
0




� �� �
a1

Q




r12
r22
0
...
0




� �� �
a2

· · · Q




r1n
r2n
r3n
...

rnn




� �� �
an

�
= Q




r11 r12 r13 · · · r1n
r22 r23 · · · r2n

r33 · · · r3n
. . . ...

rnn




� �� �
=:R

= QR.

This defines the so-called QR-decomposition of a matrix A.

As a result, we get (q1, . . . ,qn) as an ONB for the space Span(a1, . . . , an) = Ran(A). We
immediately get QTQ = 1n.

Example 5.30. Consider

A =




2 −1 8
1 1 1
−2 4 4




q1 =
a1

�a1�
=

a1

3
=




2/3
1/3
−2/3


 , r11 = 3

r12 = �a2,q1� = −3, q2 =



1/3
2/3
2/3


 , r22 = 3

r13 = �a3,q1� = 3, r13 = �a3,q1� = 6, q3 =




2/3
−2/3
1/3


 , r33 = 6;

Q =




2/3 1/3 2/3
1/3 2/3 −2/3
−2/3 2/3 1/3


 R =



3 −3 3

3 6
6



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Example 5.31.

For A =




2 −1 8
1 1 1
−2 4 4


 Gram-Schmidt gives us q1 =

a1

�a1�
=




2/3
1/3
−2/3


 ,

q2 =
a2 − (a2) Span(q1)

� . . . � =




1/3
2/3
2/3


 , q3 =

a3 − (a3) Span(q1,q2)

� . . . � =




2/3
−2/3
1/3




Hence: Q =
1

3




2 1 2
1 2 −2
−2 2 1


 and R = QTA =



3 −3 3

3 6
6


 .

As we have seen in the LR-decomposition, we can also use the QR-decomposition for
solving an LES Ax = b. If A is a square matrix (m = n), we know:

Ax = b ⇐⇒ QRx = b
Q−1=QT

⇐⇒ Rx = QTb (5.8)

The last system has a triangle form and is solved by backwards substitution. A QR-
decomposition is also possible in the non-square case as we will see later in detail.

5.6 Distances: points, lines and planes (for reading at
home)

Recall that we call an affine subspace H in Rn with dimension n− 1 a hyperplane. This
is, for example, a line in R2 or a plane in R3.

Definition 5.32. Hesse normal form (HNF), distance dist(·,·)
For each hyperplane in Rn, there exists a normal form

{v ∈ Rn : �n,v − p� = 0}
where p ∈ Rn is one chosen point and n ∈ Rn a normal vector. We call it
Hesse normal form (HNF) if �n� = 1 holds.

For a given point q ∈ Rn and affine subspaces S, T in Rn, we write:

dist(q, T ) := min
t∈T

�q− t� and dist(S, T ) := min
s∈S

dist(s, T ) = min
s∈S

min
t∈T

�s− t�

for the shortest distance between v and T and the shortest distance between S and
T , respectively.
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If we are using the HNF for a hyperplane, then the expression �n,v − p� can indeed
measure the distances:

Proposition 5.33.

For a hyperplane T = {v ∈ Rn : �n,v − p� = 0} with �n� = 1 (this is the HNF),
we have

�n,q− p� = ±dist(q, T ) (5.9)

where the sign “+” holds if q lies on the same side of T as the normal vector n,
and “−” holds if q lies on the other side of T .

Proof. This is an exercise where you should use

�n,v − p� = �n,v − p�
1

=
�v − p,n�
�n,n�

and use projections.
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Distances in R3

• Point/Point: dist(p,q) = �p− q�, (for completeness’s sake),

• Point/Plane: dist(q,p+ Span(a,b)� �� �
E

) = |�n,q− p�|, cf. (5.9).

• Line/Plane:

dist(p+ Span(a)� �� �
g

,q+ Span(b, c)� �� �
E

) = dist(p, E),

if g is parallel with respect to E. In the other case, g and E intersect,
and, hence, dist(g, E) = 0. If g is parallel with respect to E, one has a
in Span(b, c): the family (a,b, c) is linearly dependent, i.e. det(a b c) = 0.

• Plane/Plane:

dist(p+ Span(a,b)� �� �
E1

,q+ Span(c,d)� �� �
E2

) = dist(p, E2),

if E1 is parallel to E2. Otherwise, dist(E1, E2) = 0, which means that E1

and E2 have an intersection. If E1 and E2 are parallel, then the normal
vectors n1 := a × b and n2 := c × d of E1 and E2, respectively, are linearly
dependent.

• Line/Line: Let g1 = p+ Span(a) and g2 = q+ Span(b) be lines in R3.
– 1st case: If a and b are parallel, then g1 and g2 are parallel.

– 2nd case: If the vectors a and b are not parallel, then

dist(g1, g2) = dist(p,q+ Span(a,b)� �� �
=:E

).

• Point/Line: Let p be a point in R3 and g = q+Span(a) a line in R3. Define
b := (p − q) × a. If b = o, then p lies in g, and, hence, dist(p, g) = 0. On
the other hand, b can be perpendicular to the plane, defined by p and g. In
this case:

dist(p, g) = dist(p,q+ Span(a,b)� �� �
=:E

).

Alternatively: Norm of the normal component of p−q with respect to Span(a)
(Proposition 5.7).
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Summary

• Each vector x ∈ Rn can be uniquely decomposed into

– a vector x U in a given subspace U and

– a vector n that is orthogonal to U .

The vector x U is called the orthogonal projection of x onto U . n is equal to x U⊥ .

• If dim(U) = 1, the calculation of x U is very easy, while one can use Proposition 5.7;
If dim(U) ≥ 2, the one has to choose a basis B for U and either

– solve an LES with the help of the Gramian matrix G(B) (Proposition 5.16) or

– build an ONS or ONB with the help of the Gram-Schmidt procedure and use
Proposition 5.23.

• A matrix A ∈ Rn×n with A−1 = AT is called orthogonal. The determinant is ±1.
Depending on the sign of det(A), the matrix A describes a reflection or a rotation.


