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5.3 Orthonormal systems and bases

For some applications it it very useful to have a set of vectors {u; ... uz} C R" which are
mutually orthogonal:

27&] = uiJ_uj = <ui,uj):()

and have unit norm:

luill = v/ (wi, w;) = 1.

1T s a=y
5’”_{0 L i

(W, u;) = 0y.

Using the Kronecker symbol:

we may write this in short:

| Definition 5.20. OS, ONS, OB, ONB

Let U be a linear subspace of R™. A family F = (uy,...,u) consisting of vectors
from U 1is called:

o Orthogonal system (0OS) if the wvectors in F are mutually orthogonal:
(u;,u;) =0 for alli,j € {1,...,k} with i # j;

e Orthonormal system (ONS) if (a;,u;) = 6;; for all i,5 € {1,...,k};

e Orthogonal basis (OB) if it is an QS and a basis of U;

e Orthonormal basis (ONB) if it is an ONS and a basis of U.

If F is an ONB, then the Gram matrix G(F) is the identity matrix and projections are

very easily calculable.
<‘A"/ ‘44) s <“f</“4> 1
ONB: ¢(F) - :

<u4/"(k> - <“k,‘4t> 1

Example 5.21. Let (-,-) = (-, -)eurs the standard inner product. W

[

(a) The canonical unit vectors

e; = (1,0,...,00", e;=1(0,1,0,...,0)", ..., e,=(0,...,0,1)"

<¢L ’ €.J> = J‘d o (‘AI"‘Ie“) bax; °J R”

VL13




14 5 General inner products, orthogonality and distances

A A ONT T /1 4 0
in R™ define an ONB for U = R". 6 o 1 :,\D, 0 o 4 >
(b) The family F = (uy, us, u3) given by 1 1 0 6 -1 o
w = (1,017, ws=(1,0,-1)7, wy=(0,1,0)7 Tedi, (g ZL:)
defines an OB of R?. We show this: We immediately have (ul, u3> = 0 and (uo, u3 29 ¢

0. Moreover, we find

N <(@), ><()E>
() ‘)

@mug=<(? 0 >=1+0—1_0

-1
Hence, F is an OS. It remains to show that F is also a basis for R*. Since dim(R?) = 3
and F consists of three linearly independent vectors, we are finished. For showing the
linear independence, the next Proposition 5.22 will be always helpful.

(c¢) Normalising the vectors from (b), we obtain an ONB (ful, \/—UQ, us).

b %p='gL- _ A1 1 A)
/

llu (] 7\ 5 .

Proposition 5.22. An OS is linearly independent.
Let F = (uy,...,u;) be an OS in R™ with v; # o for i = 1,...,k. Then F is

linearly independent. _

Proof. Let F be an OS. To show the linear independence of F, we only have to show that

ai1uy + ... + apu, =0 always implies a; = ... = a; = 0. Using the inner product for u;
with i =1,...,k, we get:
o u) = e e o
0= o,u;) = (vju; + ...+ apug, U, = W /7
P 4<u,|, u"_> + -+ “‘: <(Ablbl;> + -4 “k(“ﬁ/“>
= <"‘c “¢>

#0 (4 (s1))

_—:> 0(,\:... =0(t=0
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Now we can show, how easy it is to calculate Gramian matrices with a basis that is
orthogonal.

| Proposition 5.23. Gramian matrix for OB and ONB

The Gramian matriz G(B) for an OB B = (uy,...,uy) is a diagonal matriz:
(up,uy) (ug,uy) ... (ug,uy) Juif® 0
agy = | o ) mew) | E07 gl
(ul,‘uk) <u2,'uk> <uk,'uk) 0 ||u2H2

If B actually is an ONB, then we have G(B) = 1.

The orthogonal projection x|, for a vector x € R™ onto the linear subspace U =
Span(B) is then given by the coefficients

”‘44(11 %4 <X w>

{ Mklll oy N u>

~> “v.,," °(4 - <;(,“‘>

F=) “Uk“,\ A = <!(,M,<>

] = <X7 u12> : Gy = <X7 u22> : o ap = <X7 uk2>
[ | [zl [ |
for equation (5.5). We get:
(x, up) (x, ug)
X, = ——Uu; +...+ ——1uy and X, =X —X
U Juy 2 [ v v

If B is even an ONB, then all the denominators ||u||? are equal to 1.

5 . - Gy CnS,
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Even if one is not interested in the projection, this can be helpful for calculating the
coefficients for the linear combination.

xgUu Xe Ul

. /\
P X
A“ ocC
Lt )
\)

Corollary 5.24. Fourier expansion w.r.t. an OB or ONB

Let U be a linear subspace of R™ and B = (uy,...,u;) an OB of U. Then the unique
linear combination for a vector x € U with respect to B is given by:

u; .
X =qu + ...+ apug with o; = H forallie{l,....k}. (5.6)
u;
This formula is called the Fourier expansion of x with respect to B, and the numbers
a; are called the associated Fourier coefficients. If B even is an (ONB, then

a; = (x,u;)  forall i=1,... k.

Note that in the case U = R", we simply set k = n.

ém el

basis of U~ owB o U



5.3 Orthonormal systems and bases 17

_I Remark: Gram-Schmidt orthonormalisation |

Let'U be a linear subspace of R™ and (uy,...,u) a basis of U. The following pro-
cedure will give us an ONB (W, ..., wy) for U.
—

(1) Normalise the first vector:
1

=——u
[

x‘
Wa >u

(2) Choose the normal component of uy with respect to Span(wy)

L 1
vy 1= Uy —(ug, w1)Wy  and normalise it: | Wy 1= Wvg
N——— V2

u
2‘Span(w1)

N
\.41_ /7;\/ l/loru...l L,,..,,h,b,\- Sfﬁn(\d,')

‘ v Wi \uu.‘- /

A &

-~ - sap - - -

\J
1 \<u,”t.\/,,>g,4 <U7'Iu1_> ___/( L/

(3) Choose the normal component of us with respect to Span(wy, wa) <U.,_,V4>

Ll L T T T

V3 i= us — <<u3,W1>W1 + <u3,W2>W2> and normalise i (EER || HVS.

hor‘\J Lsn/a h_d'

\"'l l%>’0
v, >:0
< 3,\-'3> /{

Span(wy,w2)

(k) In the last step choose the normal component of uy w.r.t. Span(wy, ..., Wy_1)
k—1 1
Vi = uy — Z(uk,W¢>W¢ and normalise it: Wy, = ﬂVk
: Vi
=1

k
‘Span(wl ,,,,, WE_1)
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Example 5.25. Let u; = (1,1,0)" and uy, = (2,0,2)” be two vectors in R* and U =
Span(uy, uz) the spanned plane. We calculate an ONB (w1, wy) for U. The first vector is

1
W) = Lu1:i 1 \-/
[Jus || Vv2\0

For the second vector, we first need to calculate:

e (§)-((0) @) @(0) - (1) () - ()

Then v is getting normalised:

W'—lv—l—ll
Tl e\ 2 )

Now we have |jwi|| = 1 = |[wa|| and (wy,ws) = 0 and also Span(wy,wy) = U =
Span(ug, uz).

We recall Corollary 5.24: Why are such ONB helpful? Usually, if we want to write a
vector v as a linear combination of basis vectors B = (by,...,by), we have to solve a
linear system:

V:Z)\ibi. ~ So(w_ LES

If we have an orthonormal basis B = (uy,...,u), then we can dispense with this. We
can simply calculate:

<V,U_Z'> = <Z )\juj,ui> = )\i<ui,ui> = )\z

J

Thus, each coefficient of the linear combination results from a simple inner product.

Remark: Outlook |

It is this principle the so called Fourier- Transformation is built on. It decomposes a
signal v(t) into frequenciesu;(t) = sin(w;t). This is, however, a problem formulated

m a more abstract vector space.
\

4

Vech. Sféce V o(.'...(v): 0o
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5.4 Orthogonal matrices

Let us now restrict our attention to the standard inner product

<X; Y> = <X7 Y>euklid — XTy7

and write down our results from above in terms of matrices.

Let B = (uy,...,u,) a basis for R”. Then each x € R™ can be uniquely written as:

| | |0 [

X=0ap|l M| +...+Hay |Un | = | UL ... Uy

| | 1) e
N—————

For the so-defined matrix A = (u; ---u,), we get:

— T — | | w'u, - wlu,
AT A = : u ... u, | = :
—u,” — | | w,Tu, - EEIBE
(ur,ur) - (up,ug)
_ : : = G(B), (5.7)
(U, up) -0 Uy, )

:> 3 s ONB (’—'> ATA:/_’/

.Sdu c‘"/ Nabmg

Definition 5.26. Orthogonal matrix
|V A matriz A € R™™ with the property AT A = 1 is called orthogonal.

We immediately see that an orthogonal matrix A has an ONB as columns and fulfils

(Ax, Ay) = (x,y).

The last property says that the corresponding linear map f4 preserves the inner product,
and thus angles and lengths.

94
AN RS
y Ay
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Proposition 5.27. Defining properties of orthogonal matrices

For a matrix A € R™*™ the following claims are equivalent:

(a) A is an orthogonal matriz

(b) ATA=1.

RS — s (A) AT A
(d) A=t = AT, //)

(e) AT is an orthogonal matriz.

(f) The columns of A define an ONB of R".

(9) The rows of A define an ONB of R™.

(h) For all x,y € R"; we get (Ax, Ay) = (X,¥).

(i) For all x € R™, we get ||Ax|| = ||x]|.

L> Tslansihon:
1
L2 = z<<’<_+yf K2 = oy s xoy>

Proof. Exercise!
e 9

]

Such matrices correspond to maps of special geometric interest:
e Rotations
e Reflections //7 Sederk ONE s hiffe it order
e Special case: permutation matrices

We also see that solving a LES Ax = b described by an orthogonal matrix A is easy to
solve:

x=A""b=A"b

The inverse is computed now more easil§f than in tlie general case.

Proposition 5.28. Determinant of orthogonal matrices

For an orthogonal matriz A, we have det(A) = +1.

Proof. 1 = det(1) = det(AT A) = det(AT) det(A) = det(A)>. O

det()
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Definition 5.29. Rotations and reflections |
Let A € R™™ be an orthogonal matriz. If det(A) = 1, we call A C/\i:rp?tatioﬁ. I
det(A) = —1, we call the matriz a reflection. o o

N Fa N A

~,
//ﬂ dd(A)=eq 1

> = =
cobebs

{4 Md(A)=-4

(a) Not every matriz A € R™™ with dét(A)ﬂr: 1 (or det(A) =,,,—1) is a rotation (or
a reflection)! D B o

et

00 / Y00

©

u'4 f_d:_zam..\/

)
AN
\

0 N
0 /1

(b) A “Teﬁéctioﬁ’; f'rom Definition 5.29 could also be a point reflection in the case
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5.5 Orthogonalisation: the QR-decomposition <,.>:<,.>
C€al/y

kXin

Ae R
> /4 ‘fl/u[[ ra...k Q“—‘> Cb(h.h.h.r j(,p...,. 4Lam'.f of /Rh

E“ L /R,, £ Selwidt
sisw R A0S 00p o R

Q(R— JCLow-f. = (ra..,.. _YQL.,_MU- ﬁ,. L‘Jﬁé‘:

| l ‘[ | ( v Oy = Dl g,

Qoo ~—> (R A, = "9+ tqu

| | L T
\/-Y——’/ N ——— :
l)a.n}’ "“'“9—«‘1 ONvB

A= qRe o

There are at least three alternatives to compute this:

l,k <_— e “Classical Gram-Schmidt™ this is what we learn next (good for pen-and-paper com-
re putations), but instable on the computer
e “Modified Gram-Schmidt™ equivalent to our Gram-Schmidt, order of loops ex-
changed, numerically more stable

e “Householder reflections” are cheaper and even more stable. This is the method of
choice in numerical computations
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If A is square matriz with rank(A) = n, we get
A= 51|1 aln
11 T12 T'1in 11 T2 Tz o Tip
0 T'22 Ton Too T23 -+ Ton
:(Q 01 Q| 0] ... Qfrsm ):Q b T3 o Tan | = QR.
0 0 Trnn @,
~ Vv
ay as an =R

This defines the so-called QR-decomposition of a matrix A.

As a result, we get (q,...,q,) as an ONB for the space Span(ay, ..

.,a,) = Ran(A). We
immediately get QTQ = 1,,.

Y

Voo = llagll A ST a,= [lagll-q,

q’L <q1./ C‘4> I /_\_)

———

\’
““)“ "9 + <a1,14

Example 5.30. Consider

(23
1 1
V3|3 m=3
! 2/3
1/3
T2 = (az,qi) = —3, Q= |2/3]|. Toy = 3
2/3

2/3
rs=(as,q1) =3, m3=(as,q1) =6, qz= (2/3> , T33=06;
1/3

2/3 1/3 2/3 3.(=33
Q=1 1/3 2/3 —2/3 R = 3 6
(2/3 2/3 1/3) ( 6)

A= QR
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Example 5.31.

2 -1 8 . Y,
For A=11 1 1 Gram-Schmidt gives us q; = —— = | 5 |,
—2 4 4 sl =2,

1/ — 2/
3 az — (a3)|sun 3
Qo ” “ 2/3 Qs ” \ pﬁ (a1,q2) —2/3

2/3 1/3

1 (2 1 2 3 -3 3
Hence: Q= 3 1 2 =2 and R=Q"A= 3 6
-2 2 1 6

As we have seen in the LR-decomposition, we can also use the QR-decomposition for
solving an LES Ax = b. If A is a square matrix (m = n), we know:

Ax=b & < (OQRx=b =¥ Bx=0Q"™ (538

The last system has a triangle form and is solved by backwards substitution. A QR-
decomposition is also possible in the non-square case as we will see later in detail.

5.6 Distances: points, lines and planes (for reading at
home)

Recall that we call an affine subspace H in R™ with dimension n — 1 a hyperplane. This
is, for example, a line in R? or a plane in R3.

Definition 5.32. Hesse normal form (HNF), distance dist(:,-)

For each hyperplane in R™, there exists a normal form
{veR": (n,v—p)=0}

where p € R™ is one chosen point and n € R™ a normal vector. We call it
Hesse normal form (HNF) if ||n|| = 1 holds.

For a given point q € R™ and affine subspaces S, T in R™, we write:

: T) — mi _4 : TV — min di T) — minmin lls — t
dist(q, T") rtrg%lHq || and dist(S,T) rsneléldlst(s, ) rsrggrtrg%lﬂs |

for the shortest distance between v and T" and the shortest distance between S and
T, respectively.
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If we are using the HNF for a hyperplane, then the expression (n,v — p) can indeed
measure the distances:

Proposition 5.33.

For a hyperplane T' = {v € R" : (n,v — p) = 0} with |n|| = 1 (this is the HNF),
we have

(n,q —p) = =dist(q,7T) (5.9)

where the sign “+7 holds if q lies on the same side of T as the normal vector n,
and “—7 holds if q lies on the other side of T'.

Proof. This is an exercise where you should use

<Il, vV — p> _ <Il, Vl_ p> _ <V<r_1 1:1’>n>

and use projections. O
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Distances in R?

e Point/Point: dist(p,q) = ||p — qal|, (for completeness’s sake),

e Point/Plane: dist(q, p + Span(a, b)) = |[(n,q — p)|, c¢f. (5.9).
E

e Line/Plane:

dist(p 4+ Span(a), q + Span(b, c¢)) = dist(p, F),
M &
if g s parallel with respect to E. In the other case, g and E intersect,
and, hence, dist(g, E) = 0. If g is parallel with respect to E, one has a

in Span(b, c): the family (a,b,c) is linearly dependent, i.e. det(a b c) = 0.
e Plane/Plane:

dist(P + Span(a, bl,g + Span(c, dl) = dist(p, E2),
E Es
if By is parallel to Ey.  Otherwise, dist(E, Ey) = 0, which means that F;
and Es have an intersection. If Ey and Ey are parallel, then the normal
vectors n; := a x b and ny := c x d of E; and E,, respectively, are linearly
dependent.

e Line/Line: Let g = p + Span(a) and go = q + Span(b) be lines in R3.
— I°Y case: If a and b are parallel, then g and g, are parallel.

— 2" case: If the vectors a and b are not parallel, then

dist(g1, g2) = dist(p, g + Span(a, b)).

=F

e Point/Line: Let p be a point in R® and g = q+ Span(a) a line in R3. Define
b:=(p—q) xa. If b= o, then p lies in g, and, hence, dist(p,g) = 0. On
the other hand, b can be perpendicular to the plane, defined by p and g. In
this case:

dist(p, g) = dist(p, q + Span(a, b)).
—_——
Alternatively: Norm of the normal component opr—q with respect to Span(a)
(Proposition 5.7).
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Summary

e FEach vector x € R” can be uniquely decomposed into
— a vector X, in a given subspace U and
— a vector n that is orthogonal to U.
The vector x|, is called the orthogonal projection of x onto U. n is equal to x|, .

e If dim(U) = 1, the calculation of x|, is very easy, while one can use Proposition 5.7;
If dim(U) > 2, the one has to choose a basis B for U and either

— solve an LES with the help of the Gramian matrix G(B) (Proposition 5.16) or

— build an ONS or ONB with the help of the Gram-Schmidt procedure and use
Proposition 5.23.

e A matrix A € R with A=! = AT is called orthogonal. The determinant is %1.
Depending on the sign of det(A), the matrix A describes a reflection or a rotation.



