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A norm for matrices
Once we can measure the size of a vector v by a norm ||v||, we may think about measuring
the “size” of a linear map. Consider A € R™*" and w = Av. Then the following quotient

[Wllem [ AV][gn

Vlre vl

tells us, how much longer (or shorter) w = Av is, compared to v. A should be “large”,
if it produces long vectors from short ones, and “small”, if it produces short vectors from
long ones. Thus, we may define

Avl|pm
|A]| := max 1AV
v£0 || V||gn
so that we have:
[Wlrm = [[Av][rn < [|All][V]|Rn-

It is not easy to compute this norm. We will consider a possibility later.

VL12

5.2 Orthogonal projections
In this section (-, ) denotes an arbitrary inner product in R™.

5.2.1 Orthogonal projection onto a line

Imagine you ride a rowboat on a river. You want to go in a direction r # o. However
water flows in direction x, which is not parallel to r.
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The steersman asks: |

What is the component of X with respect to the wanted direction r ¢

In mathematical language: Write
the vector x in a linear combination

X=p-+n

consisting of two orthogonal vec-
tors: p is parallel to the wanted dir-
ection r and n is orthogonal to this.

Definition 5.6. Orthogonal projection onto a line

x with respect to U.

Let (-, -) be an inner product in R™ and U := Span(r) forr # o. For a decomposition
X = p+n for a vector x € R" into two orthogonal vectorsp € U andn L r, we call
p the orthogonal projection of x{onto U, and n is called the normal component of

U’I“'L f,r] < u /

L
hlh‘_LI' (V!,h\Cu )

Lpp 2= <gp 2 c0

54014'. TLLM 5 sul)/ Sne .S'koL. dlCaﬂ-fanilfon.
X= f +h ,; X = 07'-( n!
=2 -p = n-n =
fm f € u* >
V"-W 1L r

«1)
=> -y

\

<M‘-\4,F—fl> = <h‘—\n, |,.‘-M>
/

o

, n-n=z=o0 => f:fl ) v

(4] =n.

Calculation of p and n: Because of p € U = Span(r), we have p = Ar for a A € R,
which we simply have to find. Since x =p+n = Ar+mn and n L r, we get: -

r) =L pam, > = Khrem

= A= S
e, r>

(s0) 269
4
‘ l"> = <7\r,r-> -l—<v-,r> = ﬂ<r{r>

The case r = o (i.e. p =0 and n = x) is omitted here. In summary, we get:

Proposition 5.7. Orth. projection & and normal component w.r.t a line

Let x,r € R™ with v # o. For the orthogonal projection p of x onto U = Span(r)
and the associated normal component n of x w.r.t. U, one finds:

r and

(x.1)
(rn)"

n=X—p=XxX—

h - y_r
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Rule of thumb: || - || gives length and (-, ) gives an angle

Geometrically ||x|| is seen as a length of the vector x. The inner product (x,y)
gives back the angle between x andy.

To define a meaningful angle between vectors, we
again look at the triangle, given by the vectors x, p +
and n. It is right-angled since p L n is our definition
of 90 degree. The angle between x and r is called «
in the picture.

—
l
CoJ'(o().: LIL,

If a is an acute angle, i.e. a € [0,7/2], then A > 0 and: ] X1

<X/ "> /

i\

Ixll cos (<) = Il =llarl = ANl = pllcgyTpT

<r e
We reformulate this: >0 \’/2/:- Ih—llq' i
(x,r) = [|x[[[|r]| cos(a).
—F

o) N
e
—
If v is not acute, we can do an analogue calculation. In summary, we can give the following
definition for an angle:

| Definition 5.8. Angle between two vectors in R”

For two vectors x,y € R™\ {o} we write angle(x,y) for the angle a € [0, 7] between
x and 'y, which is defined by

~) avlc()(,y) i= ﬂrccoy('r)

. y) (5.3)

iyl

cos(a) =

Using Proposition 5.5 (Cauchy-Schwarz-inequality), we conclude that the angle is well-
defined:

Iy 11y [

e

This means the right-hand side of (5.3) is indeed in the range of the cos function. Re-
stricted to a € [0, 7], we know that cos(«) is bijective, and hence, « is well-defined by

equation (5.3). ~
/ Cos: Jox) —>[-1,1]

‘ i‘)'cg‘w'u

<1.

>

-

7-
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Example 5.9. Consider the cube C in R? with center M in the origin and the corners
(£1, %1, 4+1)T, where all the combinations with 4--signs occur.
1
1

=

—1
All diagonals of C' go trough M and intersect with an angle
«, which is calculated with the vectors x = (1,1,1)7 and 1

y=(=1,1,1)7;

COS(O[) _ <X y>eukl7,d e ] l 7 <
Myl (VITIEIVITIEL & ¥
M

which implies o = arccos(%) ~ 70.53°.

5.2.2 Orthogonal projection onto a subsgace X l/(

oD i pokd i R ///

In order to do this, we recall the concept of orthogonal complements:

| Definition 5.10. Orthogonal complement M~

Let M C R™ be nonempty. Then we call /,’\

L={xeR": (x,m)=0 for allm € M}

Va

the orthogonal complement for M. Instead of x € M=, we often write X 1. M. j
|

Example 5.11. Consider (-, -)curiq the standard inner product in R™.
(a) For M = {o} in R", we have M+ = R".

J_} iXCth:<X/0>: 03 ={Rh /\

(b) For M = {e;} in R?, we have M+ = Span(e;) C R>.
——

L X, T X, _ 7 <, ﬁz)’c,,'}
il SBo W 2=of=

—
— P



= i(ﬁ:)eﬁ?: xz-(j) , X, € m}
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- o -
= [n(3) - xeR] = Junler)
(¢) For M = {3e1} in R?, we have M+ = Span(e;) C R ,P
T e >3 -
c
(d) For M = {ey,3e;} in R?, we have M+ = Span(ey) C R>. 1 T
(e) For M = Span(e;) in R? we have M+ = Span(e,) C R 5 ( )
n (&
(f) For M = {ey, ey} or M = Span(ey, e;) in R3, we have M+ = Span(ez) C R3. e s
- g
= =
(g) Forn € R?\ {0}, we have {n}* the plane R? through 0 with normal vector n

<

7
(h) For n € R?*\ {0} and p € R?, we have p+ Im:/the plane R? through p with normal
vector n (this is an affine space {x € R®: (x — p,n) = 0}).
—_— TN— (™
X
R\ff

o N/
(i) For M = Span(e;,es,e5) in R®, we have M+ = Span(es, e;) C R°.
= e

X X, 2 /2

L Xy X 2
M i ;((3 ERS : 3 |y L =0 }('” “//Y"/}"IVJEIR
. )
x:— 5 Ys
= ‘Yp"”(e-?rcw)

| Proposition 5.12.

For all nonempty sets M_C R™ we have:
Py |

(a) M+ = (Span(3D))

v

(b) M~ is a linear subspace of R™.

a—

f,g:‘.{i (_4) H'L - (Sfﬁu(n))l ) CC) ; XE H‘L =-> 'aneH : <)(’|,..> =0
k
= YAeR YwmieH - _ e, e k
LS ,;;242’<“”‘—):0J> - <X, ST >

——

321

=> Yuc Galn): <sod>io =D veful)

4L
(D) Xe (Sfan(_h)) => Vu€ Soﬁh(H)I < udD=0 => V"-C h XW> =0
= x€ -
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We state one important property of the orthogonal complement. Other important ones,
you find at the end of this section. u

Proposition 5.13. Properties of U+

For a linear subspace U C R™, we have U NU* = {o}. \

|
Ip,ocJ:_ Xe ‘(’)n_(_}_-_\ Tluv, <X,V\> =0 J.;r q,” wel , ( ,)mLir--\lu-ﬁ,. u= x

=> <X,x> =0 => X=o0. i

(s7)
Y

—

Proposition 5.14. Orthogonal to a basis

Let U be a linear subspace of R" and B = (uy,...,u;) a basis of U. Then for all
x € R"™ we have:

x1lU <+<— x1B.

In other words: x is orthogonal to all vectors in U if and only if it is orthogonal to
the basis vectors of U.

M; (:_>)/ <) x2 8 = ui> =0 for M

k k

= Vel - 0 = g?’a o> = xS0 ‘*J>
gg“ﬁs J~ =»

=> Yuecll- x,w>=0 = x. U N

/v\_/—-> ()r\lL /Per'uJ'l’an oh'llo .5qu‘ ace U
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Definition 5.15. Orthogonal projection onto a subspace U

Let U be a linear subspace of R™ and also let

x € R". Again, we search for a decomposi- n

tion: A A
pelU and n LU with x=p+n. ,

In other words, we write x as a sum of two
vectors, where one lies in U and the other

one is orthogonal to U.

\)

The (uniquely determined) vector p is called the orthogonal projection of x wnto
U, and n is called the normal component of x w.r.t. U.

For the orthogonal projection p of x onto U, we often simply write x|, .
In this notation, the decomposition X = p + n gets:

X = Xy + XL, i.e. P=X, and n=X,

Calculation of the orthogonal projection x| : Cl,“ﬂ_ " L‘-n‘: DJ n - f:(“n,'--/uk)

[hew: 07-:0(“4*---4 KUy wibl
;” Uk Noe K, .., AgE IR (:-
1./ o{; ! )

Fori=1,... k, we have J,,. X.;PH,, = oy Ut e a AU+ I

}Sz ),(52)
(x,u0;) = (quy + ... F opu +myu;) = o (ug, W) + ...+ agug, W) +(n,uw;) . (5.4)
—_ — T
q:or- (. ~A> an ‘7MG,L.lh
Now we have k equations and k& unknowns v, ..., ax:
Proposition 5.16. Calculating the projection x|,
Let x € R™ and U be a linear subspace of R™ where B = (uy,...,u) is a basis of
U. Then we get the orthogonal projection
Xy = oug + ... + Uy,
where o, . ..,y are given by the (unique) solution of the LES:
- 0
(ug,uy) W) 7. (ug, ug) e%} (x,uy)
<111> 112> Uz, u2> cee <11k, U@ 0% <X, u2>
: : : .= ) . (5.5)
<u17 uk) <u27 uk> ° 00 <uk7 u@ 093 <X7 uk>
The (k x k) matriz on the left-hand side is called the Gramian matrix G(B). The
normal component n = X|;;, s then given byn =X — X|;;.

Torg 0. (,,A - E@) imackbl &> Ker (6(8)) = fot . Clunse (£)€ Ke(c@)).
v
Thea : 0= ;?Quu,b <2’\'\ > D Vell any rept =>v:0 0

(‘Ior w) €M
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| Proposition 5.17. Approximation formula

Let x € R™ and U be a linear subspace of R™.

The orthogonal projection X, minimises the n
distance between x and the subspace U : A é
| || = mi[I]l |x — u|| =t dist(x, U)
uc

n

In other words: No other vector of U is as
closed to x as Xy;.

Proof. For all u € U, we get

I —ull* = || (x = xp) + (¥ — ) [I* = (n+ v,n+v) = (n,n) +2 (n,v) + (v, v) = [n]%
_— —_————  —— ——  ——

N——" .

n =5 [In]|? 0 >0
and, hence, ||[x —ul| > |n| = ||x — x;||. Equality holds if and only if v = o, i.e.
u = X. []

| Proposition 5.18.

For all nonempty sets M C R™ we have:
(a) R™ = Span(M) + M* and Span(M) N M+ = {o},
(b) ((M~+)+ = Span(M).

%: (a) u.h'..j P"’(f' SA: Fec xe R : X=p+n il fe%“(h) ) b (M)

=> nec (Sam(H))'L: HJ‘ (7,»0«,.,1-).)» s.n)
Top. 613 = o () n Mt = §03

(é ) _F)(arcrn_ f

| Corollary 5.19. Properties of U+

For a linear subspace U C R", we have:

(a) R" =U + Ut and UNU*+ = {o}. Usually, one writes in this case:

RP=UaU*.

(b) dim(U+) = dim(R") — dim(U).
(c)(UH)==U.

([1/‘10_): Fk’zrci,,-e',
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2, iz;
¢ 3y

é; e. - D=
/}\ < ! J>¢kk(;4 CS".)
—_— . .
« | N — 9, i
i €4
5.3 Orthonormal systems and bases
N ——

For some applications it it very useful to have a set of vectors {u; ... ux} C R"™ which are

mutually orthogonal:

1 #] = w L u; < <ui,

and have unit norm:
Jwl| = v/ (u,v;) = 1.

Using the Kronecker symbol:

1 1=
@_{0 oy
we may write this in short:
(ul-, llj> = 62]

| Definition 5.20. OS, ONS, OB, ONB

u;) =0

from U 1is called:

(uj,u;) =0 for alli,j € {1,...,k} with i # j;
e Orthonormal system (ONS) if (u;,u;) = d0;; for

Let U be a linear subspace of R™. A family F = (uy,...

e Orthogonal system (0OS) if the wvectors in F are mutually orthogonal:

e Orthogonal basis (OB) if it is an OS and a basis of U;
e Orthonormal basis (ONB) if it is an ONS and a basis of U.

,ug) consisting of vectors

alli,je{l,... k};

If F is an ONB, then the Gram matrix G(F) is the identity matrix and projections are

very easily calculable.

Example 5.21. Let (-,-) = (-, *)cur the standard inner product.

(a) The canonical unit vectors

e; = (1,0,...,0), e;=1(0,1,0,...,0)7,



