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A norm for matrices

Once we can measure the size of a vector v by a norm �v�, we may think about measuring
the “size” of a linear map. Consider A ∈ Rm×n, and w = Av. Then the following quotient

�w�Rm

�v�Rn

=
�Av�Rm

�v�Rn

tells us, how much longer (or shorter) w = Av is, compared to v. A should be “large”,
if it produces long vectors from short ones, and “small”, if it produces short vectors from
long ones. Thus, we may define

�A� := max
v �=0

�Av�Rm

�v�Rn

,

so that we have:
�w�Rm = �Av�Rm ≤ �A��v�Rn .

It is not easy to compute this norm. We will consider a possibility later.
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5.2 Orthogonal projections

In this section �·, ·� denotes an arbitrary inner product in Rn.

5.2.1 Orthogonal projection onto a line

Imagine you ride a rowboat on a river. You want to go in a direction r �= o. However
water flows in direction x, which is not parallel to r.
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The steersman asks:
What is the component of x with respect to the wanted direction r?

In mathematical language: Write
the vector x in a linear combination

x = p+ n

consisting of two orthogonal vec-
tors: p is parallel to the wanted dir-
ection r and n is orthogonal to this.

·

U = Span{r}
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Definition 5.6. Orthogonal projection onto a line

Let �·, ·� be an inner product in Rn and U := Span(r) for r �= o. For a decomposition
x = p+n for a vector x ∈ Rn into two orthogonal vectors p ∈ U and n ⊥ r, we call
p the orthogonal projection of x onto U , and n is called the normal component of
x with respect to U .

Calculation of p and n: Because of p ∈ U = Span(r), we have p = λr for a λ ∈ R,
which we simply have to find. Since x = p+ n = λr+ n and n ⊥ r, we get:

�x, r� =

The case r = o (i.e. p = o and n = x) is omitted here. In summary, we get:

Proposition 5.7. Orth. projection & and normal component w.r.t a line

Let x, r ∈ Rn with r �= o. For the orthogonal projection p of x onto U = Span(r)
and the associated normal component n of x w.r.t. U , one finds:

p =
�x, r�
�r, r� r and n = x− p = x− �x, r�

�r, r� r.
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Rule of thumb: � · � gives length and �·, ·� gives an angle

Geometrically �x� is seen as a length of the vector x. The inner product �x,y�
gives back the angle between x and y.

To define a meaningful angle between vectors, we
again look at the triangle, given by the vectors x, p
and n. It is right-angled since p ⊥ n is our definition
of 90 degree. The angle between x and r is called α
in the picture.

·α

x

rp

n

o

If α is an acute angle, i.e. α ∈ [0, π/2], then λ ≥ 0 and:

�p� =

We reformulate this:

�x, r� = �x��r� cos(α).

If α is not acute, we can do an analogue calculation. In summary, we can give the following
definition for an angle:

Definition 5.8. Angle between two vectors in Rn

For two vectors x,y ∈ Rn \{o} we write angle(x,y) for the angle α ∈ [0, π] between
x and y, which is defined by

cos(α) =
�x,y�
�x��y� . (5.3)

Using Proposition 5.5 (Cauchy-Schwarz-inequality), we conclude that the angle is well-
defined:

|�x,y�|
�x��y� ≤ 1 and hence − 1 ≤ �x,y�

�x��y� ≤ 1 .

This means the right-hand side of (5.3) is indeed in the range of the cos function. Re-
stricted to α ∈ [0, π], we know that cos(α) is bijective, and hence, α is well-defined by
equation (5.3).
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Example 5.9. Consider the cube C in R3 with center M in the origin and the corners
(±1,±1,±1)T , where all the combinations with ±-signs occur.

All diagonals of C go trough M and intersect with an angle
α, which is calculated with the vectors x = (1, 1, 1)T and
y = (−1, 1, 1)T :

cos(α) =
�x,y�euklid
�x��y� =

−1 + 1 + 1√
1 + 1 + 1

√
1 + 1 + 1

=
1

3
,

which implies α = arccos( 1
3
) ≈ 70.53◦.

α

M

y



−1
1
1




x



1
1
1




5.2.2 Orthogonal projection onto a subspace

In order to do this, we recall the concept of orthogonal complements:

Definition 5.10. Orthogonal complement M⊥

Let M ⊂ Rn be nonempty. Then we call

M⊥ := {x ∈ Rn : �x,m� = 0 for all m ∈ M}

the orthogonal complement for M . Instead of x ∈ M⊥, we often write x ⊥ M .

Example 5.11. Consider �·, ·�euklid the standard inner product in Rn.

(a) For M = {o} in Rn, we have M⊥ = Rn.

(b) For M = {e1} in R2, we have M⊥ = Span(e2) ⊂ R2.
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(c) For M = {3e1} in R2, we have M⊥ = Span(e2) ⊂ R2.

(d) For M = {e1, 3e1} in R2, we have M⊥ = Span(e2) ⊂ R2.

(e) For M = Span(e1) in R2, we have M⊥ = Span(e2) ⊂ R2.

(f) For M = {e1, e2} or M = Span(e1, e2) in R3, we have M⊥ = Span(e3) ⊂ R3.

(g) For n ∈ R3 \ {o}, we have {n}⊥ the plane R3 through 0 with normal vector n.

(h) For n ∈ R3 \{o} and p ∈ R3, we have p+{n}⊥, the plane R3 through p with normal
vector n (this is an affine space {x ∈ R3 : �x− p,n� = 0}).

(i) For M = Span(e1, e2, e5) in R5, we have M⊥ = Span(e3, e4) ⊂ R5.

Proposition 5.12.

For all nonempty sets M ⊂ Rn we have:

(a) M⊥ = (Span(M))⊥,

(b) M⊥ is a linear subspace of Rn.
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We state one important property of the orthogonal complement. Other important one,
you find at the end of this section.

Proposition 5.13. Properties of U⊥

For a linear subspace U ⊂ Rn, we have U ∩ U⊥ = {o}.

Proposition 5.14. Orthogonal to a basis

Let U be a linear subspace of Rn and B = (u1, . . . ,uk) a basis of U . Then for all
x ∈ Rn we have:

x ⊥ U ⇐⇒ x ⊥ B.
In other words: x is orthogonal to all vectors in U if and only if it is orthogonal to
the basis vectors of U .
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Definition 5.15. Orthogonal projection onto a subspace U

Let U be a linear subspace of Rn and also let
x ∈ Rn. Again, we search for a decomposi-
tion:

p ∈ U and n ⊥ U with x = p+ n.

In other words, we write x as a sum of two
vectors, where one lies in U and the other
one is orthogonal to U .

U·x

p

n

0

The (uniquely determined) vector p is called the orthogonal projection of x onto
U , and n is called the normal component of x w.r.t. U .

For the orthogonal projection p of x onto U , we often simply write x U .
In this notation, the decomposition x = p+ n gets:

x = x U + x U⊥ , i.e. p = x U and n = x U⊥

Calculation of the orthogonal projection x U :

For i = 1, . . . , k, we have

�x,ui� = �α1u1 + . . .+ αkuk + n,ui� = α1�u1,ui�+ . . .+ αk�uk,ui�+ �n,ui�� �� �
0

. (5.4)

Now we have k equations and k unknowns α1, . . . ,αk:

Proposition 5.16. Calculating the projection x U

Let x ∈ Rn and U be a linear subspace of Rn where B = (u1, . . . ,uk) is a basis of
U . Then we get the orthogonal projection

x U = α1u1 + . . .+ αkuk,

where α1, . . . ,αk are given by the (unique) solution of the LES:



�u1,u1� �u2,u1� . . . �uk,u1�
�u1,u2� �u2,u2� . . . �uk,u2�

...
...

...
�u1,uk� �u2,uk� . . . �uk,uk�







α1

α2
...
αk


 =




�x,u1�
�x,u2�

...
�x,uk�


 . (5.5)

The (k × k) matrix on the left-hand side is called the Gramian matrix G(B). The
normal component n = x U⊥ is then given by n = x− x U .
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Proposition 5.17. Approximation formula

Let x ∈ Rn and U be a linear subspace of Rn.
The orthogonal projection x U minimises the
distance between x and the subspace U :

�x− x U� �� �
n

� = min
u∈U

�x− u� =: dist(x, U)

In other words: No other vector of U is as
closed to x as x U .

U·x

x U

n

u

0

Proof. For all u ∈ U , we get

�x−u�2 = � (x− x U)� �� �
n

+(x U − u)� �� �
=:v

�2 = �n+v,n+v� = �n,n�� �� �
�n�2

+2 �n,v�� �� �
0

+ �v,v�� �� �
≥0

≥ �n�2,

and, hence, �x − u� ≥ �n� = �x − x U�. Equality holds if and only if v = o, i.e.
u = x U .

Proposition 5.18.

For all nonempty sets M ⊂ Rn we have:

(a) Rn = Span(M) +M⊥ and Span(M) ∩M⊥ = {o},

(b) (M⊥)⊥ = Span(M).

Corollary 5.19. Properties of U⊥

For a linear subspace U ⊂ Rn, we have:

(a) Rn = U + U⊥ and U ∩ U⊥ = {o}. Usually, one writes in this case:

Rn = U ⊕ U⊥ .

(b) dim(U⊥) = dim(Rn)− dim(U).

(c) (U⊥)⊥ = U .
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5.3 Orthonormal systems and bases

For some applications it it very useful to have a set of vectors {u1 . . .uk} ⊂ Rn which are
mutually orthogonal:

i �= j ⇒ ui ⊥ uj ⇔ �ui,uj� = 0

and have unit norm:
�ui� =

�
�ui,ui� = 1.

Using the Kronecker symbol:

δij =

�
1 : i = j
0 : i �= j

we may write this in short:
�ui,uj� = δij .

Definition 5.20. OS, ONS, OB, ONB

Let U be a linear subspace of Rn. A family F = (u1, . . . ,uk) consisting of vectors
from U is called:

• Orthogonal system (OS) if the vectors in F are mutually orthogonal:
�ui,uj� = 0 for all i, j ∈ {1, . . . , k} with i �= j;

• Orthonormal system (ONS) if �ui,uj� = δij for all i, j ∈ {1, . . . , k};
• Orthogonal basis (OB) if it is an OS and a basis of U ;
• Orthonormal basis (ONB) if it is an ONS and a basis of U .

If F is an ONB, then the Gram matrix G(F) is the identity matrix and projections are
very easily calculable.

Example 5.21. Let �·, ·� = �·, ·�eukl the standard inner product.

(a) The canonical unit vectors

e1 = (1, 0, . . . , 0)T , e2 = (0, 1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T


