A norm for matrices

Once we can measure the size of a vector \mathbf{v} by a norm $\|\mathbf{v}\|$, we may think about measuring the "size" of a linear map. Consider $A \in \mathbb{R}^{m \times n}$, and $\mathbf{w}=A \mathbf{v}$. Then the following quotient

$$
\frac{\|\mathbf{w}\|_{\mathbb{R}^{m}}}{\|\mathbf{v}\|_{\mathbb{R}^{n}}}=\frac{\|A \mathbf{v}\|_{\mathbb{R}^{m}}}{\|\mathbf{v}\|_{\mathbb{R}^{n}}}
$$

tells us, how much longer (or shorter) $\mathbf{w}=A \mathbf{v}$ is, compared to \mathbf{v}. A should be "large", if it produces long vectors from short ones, and "small", if it produces short vectors from long ones. Thus, we may define

$$
\|A\|:=\max _{\mathbf{v} \neq 0} \frac{\|A \mathbf{v}\|_{\mathbb{R}^{m}}}{\|\mathbf{v}\|_{\mathbb{R}^{n}}}
$$

so that we have:

$$
\|\mathbf{w}\|_{\mathbb{R}^{m}}=\|A \mathbf{v}\|_{\mathbb{R}^{m}} \leq\|A\|\|\mathbf{v}\|_{\mathbb{R}^{n}}
$$

It is not easy to compute this norm. We will consider a possibility later.

5.2 Orthogonal projections

In this section $\langle\cdot, \cdot\rangle$ denotes an arbitrary inner product in \mathbb{R}^{n}.

5.2.1 Orthogonal projection onto a line

Imagine you ride a rowboat on a river. You want to go in a direction $\mathbf{r} \neq \mathbf{o}$. However water flows in direction \mathbf{x}, which is not parallel to \mathbf{r}.

The steersman asks:

What is the component of \mathbf{x} with respect to the wanted direction \mathbf{r} ?
In mathematical language: Write the vector \mathbf{x} in a linear combination

$$
\mathbf{x}=\mathbf{p}+\mathbf{n}
$$

consisting of two orthogonal rectors: \mathbf{p} is parallel to the wanted diraction \mathbf{r} and \mathbf{n} is orthogonal to this.

Definition 5.6. Orthogonal projection onto a line

Let $\langle\cdot, \cdot\rangle$ be an inner product in \mathbb{R}^{n} and $U:=\operatorname{Span}(\mathbf{r})$ for $\mathbf{r} \neq \mathbf{o}$. For a decomposition $\mathbf{x}=\mathbf{p}+\mathbf{n}$ for a vector $\mathbf{x} \in \mathbb{R}^{n}$ into two orthogonal vectors $\mathbf{p} \in U$ and $\mathbf{n} \perp \mathbf{r}$, we call \mathbf{p} the orthogonal projection of \mathbf{x} onto U, and \mathbf{n} is called the normal component of x with respect to U.

Show: There is only one such decomposition.

$$
\begin{aligned}
& \underline{x}=p+n \quad, \underline{x}=p^{\prime}+n^{\prime} \quad \text { with } p, p^{\prime} \in U, n, n^{\prime} \perp r\left(n, n^{\prime} \in U^{\perp}\right) \text {. } \\
& \Rightarrow \underset{m}{p-p^{\prime}=n^{\prime}-n\left(E u^{\prime}\right)} \Rightarrow\left\{\begin{array}{l}
\left\langle p-p^{\prime}, p-p^{\prime}\right\rangle
\end{array} \Rightarrow\left\langle p-p^{\prime}, n^{\prime}-n\right\rangle=0\right. \\
& \text { U } \quad n^{\prime}-n \perp r \\
& \stackrel{(S 1)}{\Rightarrow} p-p^{\prime}=0, n^{\prime}-n=0 \Rightarrow p=p^{\prime}, n^{\prime}=n \text {. }
\end{aligned}
$$

Calculation of \mathbf{p} and \mathbf{n} : Because of $\mathbf{p} \in U=\operatorname{Span}(\mathbf{r})$, we have $\mathbf{p}=\lambda \mathbf{r}$ for a $\lambda \in \mathbb{R}$, which we simply have to find. Since $\mathbf{x}=\mathbf{p}+\mathbf{n}=\lambda \mathbf{r}+\mathbf{n}$ and $\mathbf{n} \perp \mathbf{r}$, we get:

$$
\begin{aligned}
\langle\mathrm{x}, \mathrm{r}\rangle= & \left.\langle p+n, r\rangle=\langle\lambda r+n, r\rangle \stackrel{\left(\delta_{2}\right)}{=}\langle\lambda r, r\rangle+\langle n, r\rangle \stackrel{\sim}{\sim} \sim_{n}^{\prime}=\lambda \leq r, r\right\rangle \\
& \Rightarrow \lambda=\frac{\langle x, r\rangle}{\langle r, r\rangle}
\end{aligned}
$$

The case $\mathbf{r}=\mathbf{o}$ (ie. $\mathbf{p}=\mathbf{o}$ and $\mathbf{n}=\mathbf{x}$) is omitted here. In summary, we get:

Proposition 5.7. Orth. projection \& and normal component w.r.t a line

Let $\mathbf{x}, \mathbf{r} \in \mathbb{R}^{n}$ with $\mathbf{r} \neq \mathbf{o}$. For the orthogonal projection \mathbf{p} of \mathbf{x} onto $U=\operatorname{Span}(\mathbf{r})$ and the associated normal component \mathbf{n} of \mathbf{x} w.r.t. U, one finds:

$$
\mathbf{p}=\frac{\langle\mathbf{x}, \mathbf{r}\rangle}{\langle\mathbf{r}, \mathbf{r}\rangle} \mathbf{r} \quad \text { and } \quad \mathbf{n}=\mathbf{x}-\mathbf{p}=\mathbf{x}-\frac{\langle\mathbf{x}, \mathbf{r}\rangle}{\langle\mathbf{r}, \mathbf{r}\rangle} \mathbf{r} .
$$

Rule of thumb: $\|\cdot\|$ gives length and $\langle\cdot, \cdot\rangle$ gives an angle

Geometrically $\|\mathbf{x}\|$ is seen as a length of the vector \mathbf{x}. The inner product $\langle\mathbf{x}, \mathbf{y}\rangle$ gives back the angle between \mathbf{x} and \mathbf{y}.

To define a meaningful angle between vectors, we again look at the triangle, given by the vectors \mathbf{x}, \mathbf{p} and \mathbf{n}. It is right-angled since $\mathbf{p} \perp \mathbf{n}$ is our definition of 90 degree. The angle between \mathbf{x} and \mathbf{r} is called α in the picture.
If α is an acute angle, i.e. $\alpha \in[0, \pi / 2]$, then $\lambda \geq 0$ and:

$\cos (\alpha)=\frac{\|p\|}{\|x\|}$

$$
\langle\mathbf{x}, \mathbf{r}\rangle=\|\mathbf{x}\|\|\mathbf{r}\| \cos (\alpha)
$$

If α is not acute, we can do an analogue calculation. In summary, we can give the following definition for an angle:

Definition 5.8. Angle between two vectors in \mathbb{R}^{n}

For two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} \backslash\{\mathbf{o}\}$ we write angle (\mathbf{x}, \mathbf{y}) for the angle $\alpha \in[0, \pi]$ between \mathbf{x} and \mathbf{y}, which is defined by

$$
\cos (\alpha)=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leadsto \operatorname{anglc}(x, y):=\arccos (\prime \prime)
$$

Using Proposition 5.5 (Cauchy-Schwarz-inequality), we conclude that the angle is welldefined:

$$
\frac{|\langle\mathbf{x}, \mathbf{y}\rangle|}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1 \quad \text { and hence } \quad-1 \leq \frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1 .
$$

This means the right-hand side of (5.3) is indeed in the range of the cos function. Restricted to $\alpha \in[0, \pi]$, we know that $\cos (\alpha)$ is bijective, and hence, α is well-defined by equation (5.3).

Example 5.9. Consider the cube C in \mathbb{R}^{3} with center M in the origin and the corners $(\pm 1, \pm 1, \pm 1)^{T}$, where all the combinations with \pm-signs occur.

All diagonals of C go trough M and intersect with an angle α, which is calculated with the vectors $\mathbf{x}=(1,1,1)^{T}$ and $\mathbf{y}=(-1,1,1)^{T}$:

$$
\cos (\alpha)=\frac{\langle\mathbf{x}, \mathbf{y}\rangle_{\text {euklid }}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\frac{-1+1+1}{\sqrt{1+1+1} \sqrt{1+1+1}}=\frac{1}{3}
$$

which implies $\alpha=\arccos \left(\frac{1}{3}\right) \approx 70.53^{\circ}$.

In order to do this, we recall the concept of orthogonal complements:
Definition 5.10. Orthogonal complement M^{\perp}
Let $M \subset \mathbb{R}^{n}$ be nonempty. Then we call

$$
M^{\perp}:=\left\{\mathbf{x} \in \mathbb{R}^{n}:\langle\mathbf{x}, \underline{\mathbf{m}}\rangle=0 \text { for all } \mathbf{m} \in M\right\}
$$

the orthogonal complement for M. Instead of $\mathbf{x} \in M^{\perp}$, we often write $\mathbf{x} \perp M$.

Example 5.11. Consider $\langle\cdot, \cdot\rangle_{\text {euklid }}$ the standard inner product in \mathbb{R}^{n}.
(a) For $M=\{\mathbf{o}\}$ in \mathbb{R}^{n}, we have $M^{\perp}=\mathbb{R}^{n}$.

$$
M^{\perp}=\left\{x \in \mathbb{R}^{n}:\langle x, 0\rangle=0\right\}=\mathbb{R}^{n}
$$

(b) For $M=\left\{\mathbf{e}_{1}\right\}$ in \mathbb{R}^{2}, we have $M^{\perp}=\operatorname{Span}\left(\mathbf{e}_{2}\right) \subset \mathbb{R}^{2}$.

$$
M^{\downarrow}=\{\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}: \underbrace{S_{2}\binom{x_{1}}{x_{2}},\binom{1}{0}}_{=x_{1}}\rangle=0\}=
$$

5.2 Orthogonal projections

$$
\begin{aligned}
& =\left\{\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}: \quad x_{2} \cdot\binom{0}{1}, x_{2} \in \mathbb{R}\right\} \\
& =\left\{x_{2} \cdot\binom{0}{1}: \quad x_{2} \in \mathbb{R}\right\}=\operatorname{Span}\left(e_{2}\right)
\end{aligned}
$$

(c) For $M=\left\{3 \mathbf{e}_{1}\right\}$ in \mathbb{R}^{2}, we have $M^{\perp}=\operatorname{Span}\left(\mathbf{e}_{2}\right) \subset \mathbb{R}^{2}$.
(d) For $M=\left\{\mathbf{e}_{1}, 3 \mathbf{e}_{1}\right\}$ in \mathbb{R}^{2}, we have $M^{\perp}=\operatorname{Span}\left(\mathbf{e}_{2}\right) \subset \mathbb{R}^{2}$.

(e) For $M=\operatorname{Span}\left(\mathbf{e}_{1}\right)$ in \mathbb{R}^{2}, we have $M^{\perp}=\operatorname{Span}\left(\mathbf{e}_{2}\right) \subset \mathbb{R}^{2}$.
(f) For $M=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ or $M=\operatorname{Span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ in \mathbb{R}^{3}, we have $M^{\perp}=\operatorname{Span}\left(\mathbf{e}_{3}\right) \subset \mathbb{R}^{3}$.

$$
\mu^{1}=\{\cdots\}
$$

(g) For $\mathbf{n} \in \mathbb{R}^{3} \backslash\{\mathbf{o}\}$, we have $\{\mathbf{n}\}^{\perp}$ the plane \mathbb{R}^{3} through 0 with normal vector \mathbf{n}.

(h) For $\mathbf{n} \in \mathbb{R}^{3} \backslash\{\mathbf{o}\}$ and $\mathbf{p} \in \mathbb{R}^{3}$, we have $\mathbf{p}+\{\mathbf{n}\}$ vector \mathbf{n} (this is an affine space $\{\underbrace{\left.\mathbf{x} \in \mathbb{R}^{3}:\langle\mathbf{x}-\mathbf{p}, \mathbf{n}\rangle=0\right\}}$).
(i) For $M=\operatorname{Span}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{5}\right)$ in \mathbb{R}^{5}, we have $M^{\perp}=\operatorname{Span}\left(\mathbf{e}_{3}, \mathbf{e}_{4}\right) \subset \mathbb{R}^{5}$.

$$
M^{\perp}=\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \in \mathbb{R}^{5}:\left\langle\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right),\left(\begin{array}{l}
y_{1} \\
y_{2} \\
0 \\
0 \\
y_{5}
\end{array}\right)\right\rangle=0 \quad \text { for all } y_{1}, y_{2}, y_{5} \in \mathbb{R}\right\}
$$

$$
=S_{p a_{n}}\left(e_{3}, e_{4}\right)
$$

Proposition 5.12.
For all nonempty sets $M \subset \mathbb{R}^{n}$ we have:
(a) $M^{\perp}=(\operatorname{Span}(M))^{\perp}$,
(b) M^{\perp} is a linear subspace of \mathbb{R}^{n}.

Poof: (a) $M^{\perp}=(S \operatorname{san}(n))^{\perp} . \quad(c): \quad x \in M^{\perp} \Rightarrow \forall m \in M:\langle x, m\rangle=0$

$$
\begin{aligned}
& \Rightarrow \forall \lambda_{j} \in \mathbb{R} \underbrace{\forall m_{j} \in M}: \quad \underline{0}=\sum_{j=1}^{k} \lambda_{j} \underbrace{\left\langle x, m_{j}\right.}_{=0}\rangle \stackrel{(52)(33)}{=}\left\langle x, \sum_{j=1}^{k} \lambda_{j} m_{j}\right\rangle \\
& \Rightarrow \forall u \in S_{p a_{n}(M)}:\langle x, u\rangle=0 \Rightarrow x \in\left(S_{p a_{n}}(M)\right)^{\perp}
\end{aligned}
$$

(0) $x \in\left(S_{p a_{n}}(M)\right)^{\perp} \Rightarrow \forall u \in S_{p a_{n}}(M):\langle x, u\rangle=0 \Rightarrow \forall m \in M:\langle x, m\rangle=0$

$$
\Rightarrow x \in \mu^{\perp}
$$

(6) Exercise (cf. Home work 4.3)

5 General inner products, orthogonality and distances

We state one important property of the orthogonal complement. Other important ones, you find at the end of this section.

Proposition 5.13. Properties of U^{\perp}

For a linear subspace $U \subset \mathbb{R}^{n}$, we have $U \cap U^{\perp}=\{\mathbf{o}\}$.
Pood: $x \in \underline{U}_{n} \underline{u}^{+}$. Then $\langle x, u\rangle=0$ for all $u \in U$, in particular for $u=x$.

$$
\Rightarrow\langle x, x\rangle=0 \quad \underset{(51)}{\Rightarrow} x=0
$$

Proposition 5.14. Orthogonal to a basis
Let U be a linear subspace of \mathbb{R}^{n} and $\mathcal{B}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ a basis of U. Then for all $\mathrm{x} \in \mathbb{R}^{n}$ we have:

$$
\mathrm{x} \perp U \Longleftrightarrow \mathrm{x} \perp \mathcal{B}
$$

In other words: \mathbf{x} is orthogonal to all vectors in U if and only if it is orthogonal to the basis vectors of U.

$$
\begin{aligned}
& \text { Poof: } \Leftrightarrow)^{\sqrt{\prime}} \Leftrightarrow x+B \Rightarrow\left\langle x, u_{j}\right\rangle=0 \text { for all } j \\
& \Rightarrow \forall \lambda_{j} \in \mathbb{R}: \underline{O}=\sum_{j=1}^{k} \lambda_{j} \underbrace{\left\langle x, u_{j}\right\rangle}_{=0}=\left\langle x, \sum_{j=1}^{k} \lambda_{j} u_{j}\right\rangle \\
& \stackrel{B \text { bands }}{\Rightarrow} \forall_{u} \in U:\langle x, n\rangle=0 \Rightarrow x \perp u .
\end{aligned}
$$

Definition 5.15. Orthogonal projection onto a subspace U

Let U be a linear subspace of \mathbb{R}^{n} and also let $\mathrm{x} \in \mathbb{R}^{n}$. Again, we search for a decomposiion:

$$
\mathbf{p} \in U \text { and } \mathbf{n} \perp U \quad \text { with } \quad \mathbf{x}=\mathbf{p}+\mathbf{n} \text {. }
$$

In other words, we write \mathbf{x} as a sum of two vectors, where one lies in U and the other one is orthogonal to U.

The (uniquely determined) vector \mathbf{p} is called the orthogonal projection of \mathbf{x} onto U, and n is called the normal component of x w.r.t. U.

For the orthogonal projection \mathbf{p} of \mathbf{x} onto U, we often simply write $\mathbf{x}_{\mid U}$. In this notation, the decomposition $\mathbf{x}=\mathbf{p}+\mathbf{n}$ gets:

$$
\mathbf{x}=\mathbf{x}_{\mid U}+\mathbf{x}_{U^{\perp}}, \quad \text { i.e. } \quad \mathbf{p}=\mathbf{x}_{\mid U} \quad \text { and } \quad \mathbf{n}=\mathbf{x}_{\mid U^{\perp}}
$$

Calculation of the orthogonal projection $x_{l U}:$ Choose a basis of $u: B=\left(u_{1}, \ldots, u_{k}\right)$
Then:

$$
p=\alpha_{1} u_{1}+\cdots+\alpha_{k} u_{k} \text { with some } \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R} \quad\left(\text { Find } \alpha_{i}!\right)
$$

For $i=1, \ldots, k$, we have for $x=p+n=\alpha_{1} u_{1}+\cdots+\alpha_{k} u_{k}+n$

$$
\frac{\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle}{}=\left\langle\alpha_{1} \mathbf{u}_{1}+\ldots+\alpha_{k} \mathbf{u}_{k}+\mathbf{n}, \mathbf{u}_{i}\right\rangle \stackrel{\left(\mathrm{J}_{2}\right),(\text { (J) })}{=} \underline{\alpha_{1}\left\langle\mathbf{u}_{1}, \mathbf{u}_{i}\right\rangle}+\ldots+\alpha^{\alpha_{k}\left\langle\mathbf{u}_{k}, \mathbf{u}_{i}\right\rangle}+\underbrace{\left\langle\mathbf{n}, \mathbf{u}_{i}\right\rangle}_{0}
$$

$$
\text { For } i \leadsto \text { an equation }
$$

Now we have k equations and k unknowns $\alpha_{1}, \ldots, \alpha_{k}$:

Proposition 5.16. Calculating the projection $\mathrm{x}_{1 U}$

Let $\mathbf{x} \in \mathbb{R}^{n}$ and U be a linear subspace of \mathbb{R}^{n} where $\mathcal{B}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ is a basis of U. Then we get the orthogonal projection

$$
\mathbf{x}_{U U}=\alpha_{1} \mathbf{u}_{1}+\ldots+\alpha_{k} \mathbf{u}_{k}
$$

where $\alpha_{1}, \ldots, \alpha_{k}$ are given by the (unique) solution of the LES:

The $(k \times k)$ matrix on the left-hand side is called the Gramian matrix $G(\mathcal{B})$. The normal component $\mathbf{n}=\mathbf{x}_{\left.\right|_{U \perp}}$ is then given by $\mathbf{n}=\mathbf{x}-\mathbf{x}_{\left.\right|_{U}}$.

Proof: Only to show $G(B)$ invertible $\Leftrightarrow \operatorname{Ker}(G(B))=\{0\}$. Choose $\left(\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{k}\end{array}\right) \in \operatorname{Ker}(G(B))$.

Proposition 5.17. Approximation formula

Let $\mathbf{x} \in \mathbb{R}^{n}$ and U be a linear subspace of \mathbb{R}^{n}. The orthogonal projection $\mathbf{x}_{\left.\right|_{U}}$ minimises the distance between \mathbf{x} and the subspace U :

$$
\|\underbrace{\mathbf{x}-\mathbf{x}_{U}}_{\mathbf{n}}\|=\min _{\mathbf{u} \in U}\|\mathbf{x}-\mathbf{u}\|=: \operatorname{dist}(\mathbf{x}, U)
$$

In other words: No other vector of U is as closed to \mathbf{x} as $\mathbf{x}_{1 U}$.

Proof. For all $\mathbf{u} \in U$, we get
$\left\|\mathbf{x - \mathbf { u } \| ^ { 2 }}=\right\| \underbrace{\left(\mathbf{x}-\mathbf{x}_{\mid U}\right)}_{\mathbf{n}}+\underbrace{\left(\mathbf{x}_{\mid U}-\mathbf{u}\right)}_{=: \mathbf{v}}\|^{2}=\langle\mathbf{n}+\mathbf{v}, \mathbf{n}+\mathbf{v}\rangle=\underbrace{\langle\mathbf{n}, \mathbf{n}\rangle}_{\|\mathbf{n}\|^{2}}+2 \underbrace{\langle\mathbf{n}, \mathbf{v}\rangle}_{0}+\underbrace{\langle\mathbf{v}, \mathbf{v}\rangle}_{\geq 0} \geq\| \mathbf{n} \|^{2}$,
and, hence, $\|\mathbf{x}-\mathbf{u}\| \geq\|\mathbf{n}\|=\left\|\mathbf{x}-\mathbf{x}_{\mid U}\right\|$. Equality holds if and only if $\mathbf{v}=\mathbf{o}$, i.e. $\mathbf{u}=\mathbf{x}_{\mid U}$.

Proposition 5.18.

For all nonempty sets $M \subset \mathbb{R}^{n}$ we have:
(a) $\mathbb{R}^{n}=\operatorname{Span}(M)+M^{\perp}$ and $\operatorname{Span}(M) \cap M^{\perp}=\{\mathbf{o}\}$,
(b) $\left(M^{\perp}\right)^{\perp}=\operatorname{Span}(M)$.

Proof: (a) Using Prop. 5.16: For $x \in \mathbb{R}^{n}: \quad x=p+n$ with $p \in \operatorname{Span}(M), n \perp \operatorname{San}(M)$ $\Rightarrow n \in\left(S_{p a n}(M)\right)^{\perp}=M^{\perp}$ (Proporitia S.M) Prop. $5.13 \Rightarrow$ Spun $(M) \cap M^{\perp}=\{0\}$
(6) Exercir:!

Corollary 5.19. Properties of U^{\perp}

For a linear subspace $U \subset \mathbb{R}^{n}$, we have:
(a) $\mathbb{R}^{n}=U+U^{\perp}$ and $U \cap U^{\perp}=\{\mathbf{0}\}$. Usually, one writes in this case:

$$
\mathbb{R}^{n}=U \oplus U^{\perp}
$$

(b) $\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}\left(\mathbb{R}^{n}\right)-\operatorname{dim}(U)$.
(c) $\left(U^{\perp}\right)^{\perp}=U$.

Proof: Exercise!

5.3 Orthonormal systems and bases

For some applications it it very useful to have a set of vectors $\left\{\mathbf{u}_{1} \ldots \mathbf{u}_{k}\right\} \subset \mathbb{R}^{n}$ which are mutually orthogonal:

$$
i \neq j \quad \Rightarrow \quad \mathbf{u}_{i} \perp \mathbf{u}_{j} \quad \Leftrightarrow \quad\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0
$$

and have unit norm:

$$
\left\|\mathbf{u}_{i}\right\|=\sqrt{\left\langle\mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle}=1
$$

Using the Kronecker symbol:

$$
\delta_{i j}=\left\{\begin{array}{lll}
1 & : & i=j \\
0 & : & i \neq j
\end{array}\right.
$$

we may write this in short:

$$
\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=\delta_{i j} .
$$

Definition 5.20. OS, ONS, OB, ONB

Let U be a linear subspace of \mathbb{R}^{n}. A family $\mathcal{F}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ consisting of vectors from U is called:

- Orthogonal system $(O S)$ if the vectors in \mathcal{F} are mutually orthogonal: $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ for all $i, j \in\{1, \ldots, k\}$ with $i \neq j$;
- Orthonormal system (ONS) if $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=\delta_{i j}$ for all $i, j \in\{1, \ldots, k\}$;
- Orthogonal basis $(O B)$ if it is an $O S$ and a basis of U;
- Orthonormal basis (ONB) if it is an ONS and a basis of U.

If \mathcal{F} is an ONB, then the Gram matrix $G(\mathcal{F})$ is the identity matrix and projections are very easily calculable.

Example 5.21. Let $\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{\text {eukl }}$ the standard inner product.
(a) The canonical unit vectors

$$
\mathbf{e}_{1}=(1,0, \ldots, 0)^{T}, \quad \mathbf{e}_{2}=(0,1,0, \ldots, 0)^{T}, \quad \ldots, \quad \mathbf{e}_{n}=(0, \ldots, 0,1)^{T}
$$

