A norm for matrices

Once we can measure the size of a vector \mathbf{v} by a norm $\|\mathbf{v}\|$, we may think about measuring the "size" of a linear map. Consider $A \in \mathbb{R}^{m \times n}$, and $\mathbf{w} = A\mathbf{v}$. Then the following quotient

$$\frac{\|\mathbf{w}\|_{\mathbb{R}^m}}{\|\mathbf{v}\|_{\mathbb{R}^n}} = \frac{\|A\mathbf{v}\|_{\mathbb{R}^m}}{\|\mathbf{v}\|_{\mathbb{R}^n}}$$

tells us, how much longer (or shorter) $\mathbf{w} = A\mathbf{v}$ is, compared to \mathbf{v} . A should be "large", if it produces long vectors from short ones, and "small", if it produces short vectors from long ones. Thus, we may define

$$\|A\| := \max_{\mathbf{v} \neq 0} \frac{\|A\mathbf{v}\|_{\mathbb{R}^m}}{\|\mathbf{v}\|_{\mathbb{R}^n}},$$

so that we have:

$$\|\mathbf{w}\|_{\mathbb{R}^m} = \|A\mathbf{v}\|_{\mathbb{R}^m} \le \|A\| \|\mathbf{v}\|_{\mathbb{R}^n}.$$

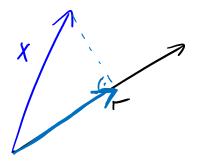
It is not easy to compute this norm. We will consider a possibility later.

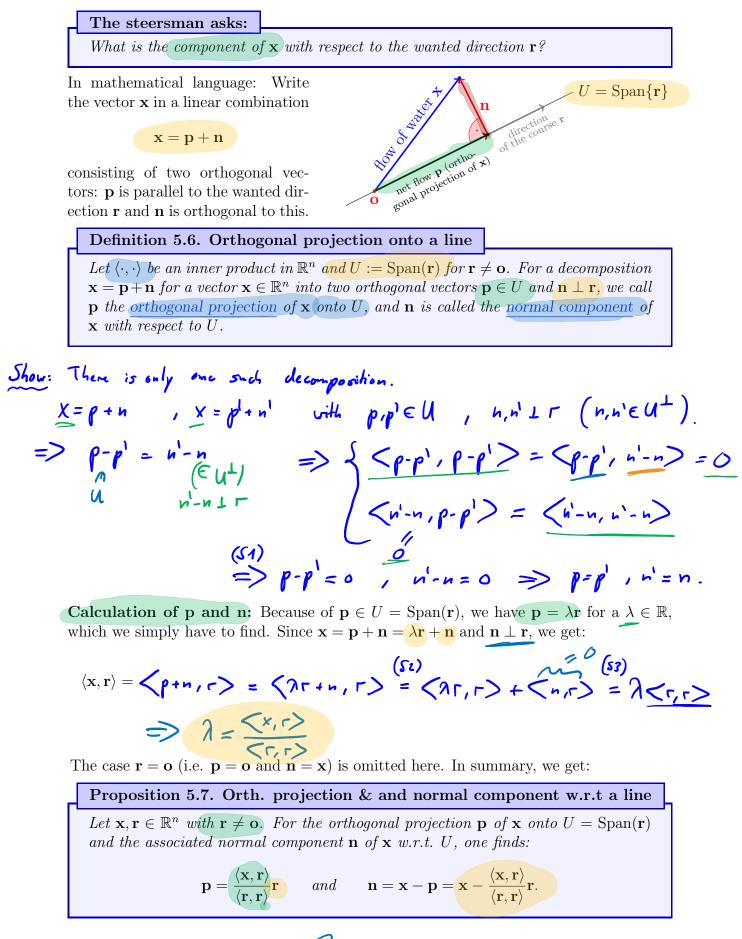
5.2 Orthogonal projections

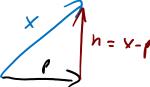
In this section $\langle \cdot, \cdot \rangle$ denotes an arbitrary inner product in \mathbb{R}^n .

5.2.1 Orthogonal projection onto a line

Imagine you ride a rowboat on a river. You want to go in a direction $\mathbf{r} \neq \mathbf{o}$. However water flows in direction \mathbf{x} , which is not parallel to \mathbf{r} .



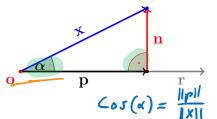




Rule of thumb: $\|\cdot\|$ gives length and $\langle\cdot,\cdot\rangle$ gives an angle

Geometrically $\|\mathbf{x}\|$ is seen as a **length** of the vector \mathbf{x} . The inner product $\langle \mathbf{x}, \mathbf{y} \rangle$ gives back the **angle** between \mathbf{x} and \mathbf{y} .

To define a meaningful angle between vectors, we again look at the triangle, given by the vectors \mathbf{x} , \mathbf{p} and **n**. It is right-angled since $\mathbf{p} \perp \mathbf{n}$ is our definition of 90 degree. The angle between **x** and **r** is called α in the picture.

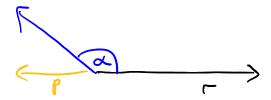


If α is an acute angle, i.e. $\alpha \in [0, \pi/2]$, then $\lambda \geq 0$ and:

$$\|\mathbf{x}\| \cos(\mathbf{x}) = \|\mathbf{p}\| = \|\mathbf{y}\| = \|\mathbf{y}\|$$

We reformulate this:

$$\langle \mathbf{x}, \mathbf{r} \rangle = \|\mathbf{x}\| \|\mathbf{r}\| \cos(\alpha).$$

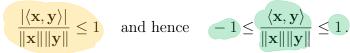


If α is not acute, we can do an analogue calculation. In summary, we can give the following definition for an angle:

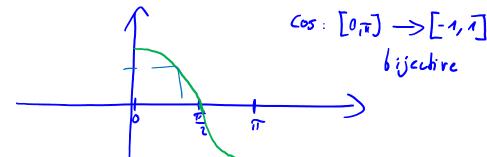
Definition 5.8. Angle between two vectors in \mathbb{R}^n

For two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n \setminus \{\mathbf{o}\}$ we write angle (\mathbf{x}, \mathbf{y}) for the angle $\alpha \in [0, \pi]$ between $\cos(\alpha) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \xrightarrow{\sim} \operatorname{angle}(\mathbf{x}, \mathbf{y}) := \operatorname{arccos}('')$ (5.3) \mathbf{x} and \mathbf{y} , which is defined by

Using Proposition 5.5 (Cauchy-Schwarz-inequality), we conclude that the angle is welldefined:



This means the right-hand side of (5.3) is indeed in the range of the cos function. Restricted to $\alpha \in [0,\pi]$, we know that $\cos(\alpha)$ is bijective, and hence, α is well-defined by equation (5.3).

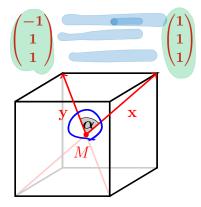


Example 5.9. Consider the cube C in \mathbb{R}^3 with center M in the origin and the corners $(\pm 1, \pm 1, \pm 1)^T$, where all the combinations with \pm -signs occur.

All diagonals of C go trough M and intersect with an angle α , which is calculated with the vectors $\mathbf{x} = (1, 1, 1)^T$ and $\mathbf{y} = (-1, 1, 1)^T$:

$$\cos(\alpha) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle_{euklid}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{-1+1+1}{\sqrt{1+1+1}} = \frac{1}{3},$$

which implies $\alpha = \arccos(\frac{1}{3}) \approx 70.53^{\circ}$.

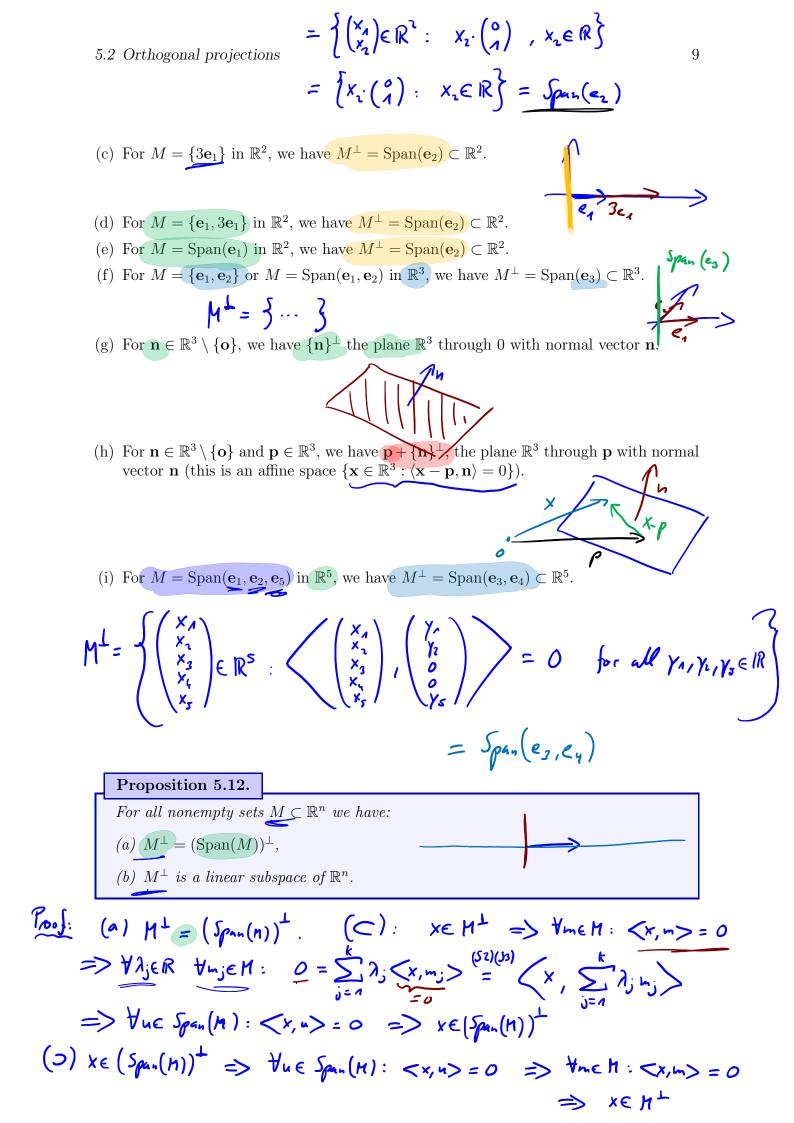


5.2.2 Orthogonal projection onto a subspace
$$x$$
 h \mathcal{U}
 $\langle i \rangle$ inner product in \mathbb{R}^{h}
In order to do this, we recall the concept of orthogonal complements:
Definition 5.10. Orthogonal complement M^{\perp}
 $k \in \mathbb{R}^{h}$ he percents.

Let
$$M \subset \mathbb{R}^n$$
 be nonempty. Then we call
 $M^{\perp} := \{ \mathbf{x} \in \mathbb{R}^n : \langle \mathbf{x}, \mathbf{m} \rangle = 0 \text{ for all } \mathbf{m} \in M \}$
the orthogonal complement for M . Instead of $\mathbf{x} \in M^{\perp}$, we often write $\mathbf{x} \perp M$.

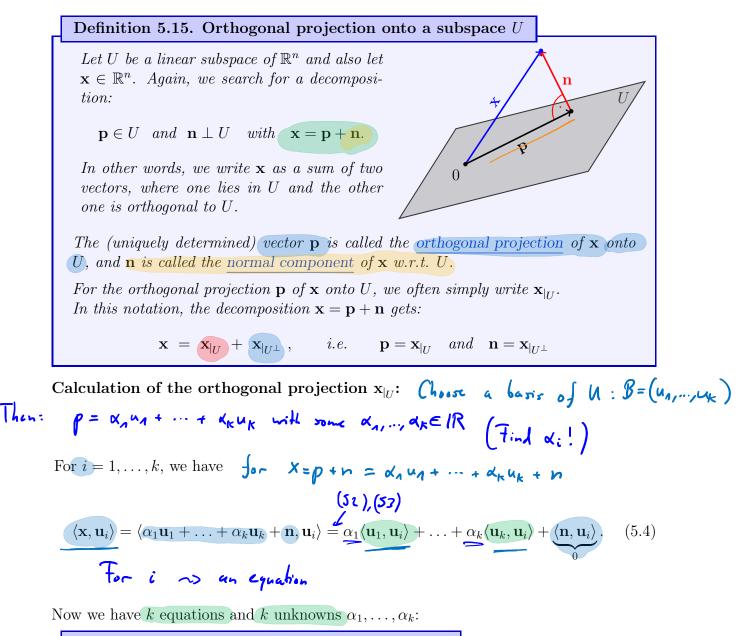
Example 5.11. Consider $\langle \cdot, \cdot \rangle_{euklid}$ the standard inner product in \mathbb{R}^n . (a) For $M = \{\mathbf{o}\}$ in \mathbb{R}^n , we have $M^{\perp} = \mathbb{R}^n$.

$$\begin{array}{l}
\mathcal{H}^{\perp} = \left\{ \begin{array}{c} x \in \mathbb{R}^{n} : \langle x, o \rangle = o \right\} = \mathbb{R}^{n} \\
\text{(b) For } M = \left\{ \begin{array}{c} \underline{\mathbf{e}}_{1} \right\} \text{ in } \mathbb{R}^{2}, \text{ we have } M^{\perp} = \operatorname{Span}(\mathbf{e}_{2}) \subset \mathbb{R}^{2}. \\
\mathcal{H}^{\perp} = \left\{ \left(\begin{array}{c} x_{n} \\ x_{2} \end{array} \right) \in \mathbb{R}^{n} : \left(\left(\begin{array}{c} x_{n} \\ x_{2} \end{array} \right), \left(\begin{array}{c} 1 \\ o \end{array} \right) \right) = o \right\} = \\
= \left\{ \begin{array}{c} x_{n} \\ x_{2} \end{array} \right\}$$



(b) Exercise (cf. However 4.3)
10 5 General inner products, orthogonality and distances
We state one important property of the orthogonal complement. Other important ones,
proposition 5.13. Properties of
$$U^{\perp}$$

For a linear subspace $U \subset \mathbb{R}^n$, we have $U \cap U^{\perp} = \{o\}$.
For $x \in \{i, j\}$, Then $\langle x, n \rangle = 0$ for all $u \in U$, in particular for $u = x$.
 $\Rightarrow \langle x, x \rangle = 0$ for all $u \in U$, in particular for $u = x$.
 $\Rightarrow \langle x, x \rangle = 0$ for all $u \in U$, in particular for $u = x$.
 $\Rightarrow \langle x, x \rangle = 0$ for $x \perp B$.
In other words: x is orthogonal to all vectors in U if and only if it is orthogonal to
the basis vectors of U.
For $(f \in X + B) \Rightarrow \langle x, u_j \rangle = 0$ for all j
 $\Rightarrow \forall \lambda_j \in \mathbb{R}$: $D = \sum_{j=x}^{k} \lambda_j \langle x, u_j \rangle = (x, \sum_{j=x}^{k} \lambda_j u_j)$
 $B = hore$
 $\Rightarrow \forall u \in U$: $\langle x, u \rangle = 0$ $\Rightarrow x \perp U$.



Proposition 5.16. Calculating the projection $\mathbf{x}_{|_{II}}$

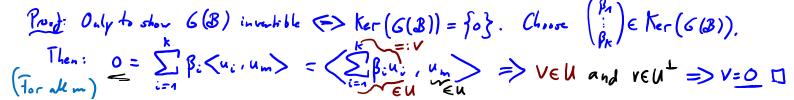
Let $\mathbf{x} \in \mathbb{R}^n$ and U be a linear subspace of \mathbb{R}^n where $\mathcal{B} = (\mathbf{u}_1, \dots, \mathbf{u}_k)$ is a basis of U. Then we get the orthogonal projection

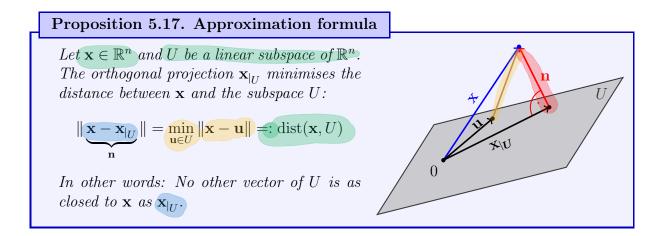
$$\mathbf{x}_{|U|} = \alpha_1 \mathbf{u}_1 + \ldots + \alpha_k \mathbf{u}_k$$

where $\alpha_1, \ldots, \alpha_k$ are given by the (unique) solution of the LES:

$$\begin{pmatrix} \langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle & \langle \mathbf{u}_{2}, \mathbf{u}_{1} \rangle & \cdots & \langle \mathbf{u}_{k}, \mathbf{u}_{1} \rangle \\ \langle \mathbf{u}_{1}, \mathbf{u}_{2} \rangle & \langle \mathbf{u}_{2}, \mathbf{u}_{2} \rangle & \cdots & \langle \mathbf{u}_{k}, \mathbf{u}_{2} \rangle \\ \vdots & \vdots & \vdots \\ \langle \mathbf{u}_{1}, \mathbf{u}_{k} \rangle & \langle \mathbf{u}_{2}, \mathbf{u}_{k} \rangle & \cdots & \langle \mathbf{u}_{k}, \mathbf{u}_{k} \rangle \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{k} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}, \mathbf{u}_{1} \rangle \\ \langle \mathbf{x}, \mathbf{u}_{2} \rangle \\ \vdots \\ \langle \mathbf{x}, \mathbf{u}_{k} \rangle \end{pmatrix}.$$
(5.5)

The $(k \times k)$ matrix on the left-hand side is called the <u>Gramian matrix</u> $G(\mathcal{B})$. The normal component $\mathbf{n} = \mathbf{x}_{|U^{\perp}}$ is then given by $\mathbf{n} = \mathbf{x} - \mathbf{x}_{|U^{\perp}}$.





Proof. For all $\mathbf{u} \in U$, we get

Exercise

$$\frac{\|\mathbf{x} - \mathbf{u}\|^2}{\mathbf{n}} = \|\underbrace{(\mathbf{x} - \mathbf{x}_{|U})}_{\mathbf{n}} + \underbrace{(\mathbf{x}_{|U} - \mathbf{u})}_{=:\mathbf{v}}\|^2 = \langle \mathbf{n} + \mathbf{v}, \mathbf{n} + \mathbf{v} \rangle = \langle \underbrace{\mathbf{n}, \mathbf{n}}_{\|\mathbf{n}\|^2} + 2 \langle \underbrace{\mathbf{n}, \mathbf{v}}_{0} \rangle + \langle \underbrace{\mathbf{v}, \mathbf{v}}_{\geq 0} \geq \|\mathbf{n}\|^2,$$

and, hence, $\|\mathbf{x} - \mathbf{u}\| \ge \|\mathbf{n}\| = \|\mathbf{x} - \mathbf{x}_{|U}\|$. Equality holds if and only if $\mathbf{v} = \mathbf{o}$, i.e. $\mathbf{u} = \mathbf{x}_{|U}$.

 Proposition 5.18.

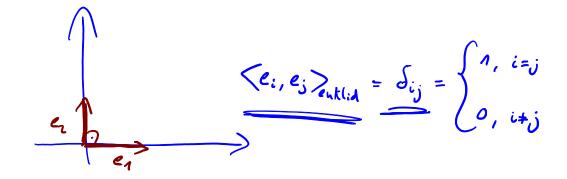
 For all nonempty sets $M \subset \mathbb{R}^n$ we have:

 (a) $\mathbb{R}^n = \operatorname{Span}(M) + M^{\perp}$ and $\operatorname{Span}(M) \cap M^{\perp} = \{\mathbf{o}\},$

 (b) $(M^{\perp})^{\perp} = \operatorname{Span}(M).$

Proof: (a) Using Prop. 5.16: For
$$x \in \mathbb{R}^{h}$$
: $X = p + n$ with $p \in Spain(M) , h \perp Spain(M)$
 $\implies h \in (Spain(M))^{\perp} = M^{\perp} (Proposition S.M)$
 $Prop. 5.13 \implies Spain(M) \cap M^{\perp} = 503$
(b) Exercise!

Corollary 5.19. Properties of U^{\perp} For a linear subspace $U \subset \mathbb{R}^n$, we have: (a) $\mathbb{R}^n = U + U^{\perp}$ and $U \cap U^{\perp} = \{\mathbf{o}\}$. Usually, one writes in this case: $\mathbb{R}^n = U \oplus U^{\perp}$. (b) $\dim(U^{\perp}) = \dim(\mathbb{R}^n) - \dim(U)$. (c) $(U^{\perp})^{\perp} = U$.



5.3 Orthonormal systems and bases

For some applications it it very useful to have a set of vectors $\{\mathbf{u}_1 \dots \mathbf{u}_k\} \subset \mathbb{R}^n$ which are mutually orthogonal:

$$i \neq j \quad \Rightarrow \quad \mathbf{u}_i \perp \mathbf{u}_j \quad \Leftrightarrow \quad \langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$$

and have unit norm:

$$\|\mathbf{u}_i\| = \sqrt{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} = 1.$$

Using the Kronecker symbol:

$$\delta_{ij} = \begin{cases} 1 & : i = j \\ 0 & : i \neq j \end{cases}$$

we may write this in short:

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{ij}$$

Definition 5.20. OS, ONS, OB, ONB

Let U be a linear subspace of \mathbb{R}^n . A family $\mathcal{F} = (\mathbf{u}_1, \ldots, \mathbf{u}_k)$ consisting of vectors from U is called:

- Orthogonal system (OS) if the vectors in \mathcal{F} are mutually orthogonal: $\overline{\langle \mathbf{u}_i, \mathbf{u}_j \rangle} = 0$ for all $i, j \in \{1, \dots, k\}$ with $i \neq j$;
- Orthonormal system (ONS) if $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \delta_{ij}$ for all $i, j \in \{1, \dots, k\}$;
- Orthogonal basis (OB) if it is an OS and a basis of U;
- <u>Orthonormal basis</u> (ONB) if it is an ONS and a basis of U.

If \mathcal{F} is an ONB, then the Gram matrix $G(\mathcal{F})$ is the identity matrix and projections are very easily calculable.

Example 5.21. Let $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{eukl}$ the standard inner product.

(a) The canonical unit vectors

$$\mathbf{e}_1 = (1, 0, \dots, 0)^T, \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0)^T, \quad \dots, \quad \mathbf{e}_n = (0, \dots, 0, 1)^T$$