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In summary:

det(A) = det(B) = 1 · det(C) = det(D) = 2 · det(E) = 2 · 13 = 26.

Remark:

• det(A−1) = 1
det(A)

(if the inverse exists)

• If Q is an orthogonal matrix (QTQ = 1), then det(Q) = ±1

• Let P be a row permutation matrix, then det(P ) = 1, if the number of row
exchanges is even, and det(P ) = −1 if it is odd.

• If PA = LU , then det(A) = 1
det(P )

det(L) det(U) = det(P ) det(U) =

± det(U).

• If A = S−1BS, then det(A) = 1
det(S)

det(B) det(S) = det(B) (similar matrices
have the same determinant).

Attention! Comparison: n3/3 (Gauß) vs. n! (Laplace/Leibniz formula)

n 2 3 4 5 6 7 8 9 10 · · · 20

n3/3 2 9 21 42 72 114 171 243 333 · · · 2667
n! 2 6 24 120 720 5040 40320 362880 3628800 · · · 2.4 · 1018
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4.5 Determinants for linear maps

• For each matrix A, there is the linear map fA : Rn → Rn.

• For each linear map f : Rn → Rn, there is a exactly one matrix A such that f = fA.

• The columns of A are then the images of the unit cube under fA.

• Then det(A) is the relative change of volume (of the unit cube) caused by fA.

Definition 4.20. Determinant for fA

For a linear map f : Rn → Rn, we define

det(f) := det(A)

where A it the uniquely determined matrix with f = fA.

In fact det(f) is the relative change of all volumes and we remind that we have the
following:

Let A,B ∈ Rn×n. We have the formula:

det(fA ◦ fB) = det(fA) det(fB)
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In general, det(A) = det(fA) describes the change of volume for every figure:

det(A) = factor for change of volume under fA

figure F
fA�→

volume · det(A)−−−−−−−−−−−→
figure F � = fA(F )

For the composition, we get the following picture:

fB fA

fAB = fA ◦ fB

1 de
t(B

) det
(AB

)

Area · det(B) Area · det(A)

Area · det(AB)

4.6 Determinants and systems of equations

Simple reasoning: if det(A) = 0, then A is not invertible, and vice versa. A matrix with
det(A) = 0 is called singular.

Example 4.21.

A(λ) =



λ 1 2
1 2 3
1 1 2


 det(A(λ)) = λ(4− 3)− 1(2− 2) + 1(3− 4) = λ− 1.
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This matrix is singular if and only if λ = 1, and in indeed, for λ = 1, we have for the
column vectors a1(λ) + a2 = a3.

Conclusion: singular matrices do not appear very often. Whatever this means.

Warning: this is only good for pen-and-paper computations. In numerical computations,
det(A+ round off) says nothing about invertibility of A, only about change of volume:

det

�
ε 0
0 1/ε

�
= 1.

We summarise our knowledge:

Proposition 4.22. Nonsingular matrices and LES

Let A ∈ Rn×n. Then the following is equivalent

(i) det(A) �= 0,

(ii) the columns of A are linearly independent,

(iii) the rows of A are linearly independent,

(iv) rank(A) = n,

(v) A is invertible,

(vi) Ax = b has a unique solution for every b ∈ Rn,

(vii) Ker(A) = {o}.

Proof. Exercise!

4.7 Cramer’s rule

Consider the linear system of equations, with full rank matrix A:

Ax = b .

Then by our formula for the inverse we get:

Ax = b ⇒ x = A−1b =
CTb

det(A)
.

This let us say the following about the components of a solution:

Proposition 4.23. Cramer’s rule

Let A ∈ Rn×n invertible and b ∈ Rn. Then the unique solution x =



x1...
xn


 ∈ Rn of

the LES Ax = b is given by:
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xi =

det


a1 · · · ai−1 b ai+1 · · · an




det


a1 · · · ai−1 ai ai+1 · · · an




� �� �
A

for i = 1, . . . , n.

Proof. Having the cofactor matrix C, we already know that the solution is given by

x = A−1b =
CTb

det(A)

Therefore, we just have to look at the ith row of the matrix CTb which is given by:

(CTb)i =
n�

k=1

ckibk =
n�

k=1

det


a1 · · · ai−1 ek ai+1 · · · an


 bk

= det


a1 · · · ai−1 b ai+1 · · · an




Attention! Do not use Cramer’s rule to solve a system Ax=b!

Cramer’s rule is less efficient than Gaussian elimination. That is noticeable for
large matrices.

For computational reasons the Cramer’s rule can only be used for small matrices, but the
real advantage is the theoretical interest. You can use Cramer’s rule in proofs if you need
claims about a single component xi of the solution x.

Summary

• The determinant is the volume form.

• The determinant fulfils three defining properties:

(1) Linear in each column.

(2) Alternating when exchanging columns.

(3) The identity matrix has determinant 1.

• To calculate a determinant, you have the Leibniz formula, the Laplace expansion or
Gaussian elimination (without scaling!).



5
General inner products, orthogonality and distances

We have already encountered the standard inner product (also called Euclidean scalar
product) in Rn:

�x,y� = xTy =
n�

i=1

xiyi , for x,y ∈ Rn

With the help of this inner product, we are able to define and compute many useful things:

• length: �x� =
�
�x,x�

• distances: dist(x,y) = �x− y�
• angle: cos(∠(x,y)) := �x,y�

�x��y�

• orthogonality: x ⊥ y : ⇔ �x,y� = 0.

• orthogonal projections, e.g. the height

• rotations about an axis by an angle

• reflections at a hyperplane

21
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5.1 General inner products in Rn

Definition 5.1. Inner product

Let V be Rn or a subspace of Rn. We call a map of two arguments �·, ·� : V ×V → R
an inner product if it satisfies for all x,y,v ∈ V and λ ∈ R:

(S1) Positive definiteness:
�x,x� > 0 for x �= o

(S2) Additivity in the first argument:

�x+ y,v� = �x,v�+ �y,v�

(S3) Homogenity in the first argument:

�λx,v� = λ�x,v�

(S4) Symmetry:
�x,y� = �y,x�

We usually summarise (S2) and (S3) to linearity in the first argument . Note that from
(S3) always follows �o, o� = 0 · �o, o� = 0. In combination with (S1), we get:

�x,x� = 0 ⇔ x = o . (5.1)

Also, due to positive definiteness, we can define a norm (or length) via

�x� :=
�

�x,x�.
We call it the the associated norm with respect to �·, ·�.

• Inner products are also linear in the second argument, by symmetry.

• Later, we will define complex-valued inner products that fulfil instead of (S4):

�x,y� = �y,x� . (5.2)

Then the second argument actually has different properties than the first.

• In the usual real case, the binomial formulas hold:

�x± y�2 = �x�2 ± 2�x,y�+ �y�2
�x+ y,x− y� = �x�2 − �y�2.

Example 5.2. The standard inner product on Rn:

�x,y�euklid := xTy =
n�

i=1

xiyi .
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Remark:
Due to its simplicity, this inner product is prominent in theory and practice. How-
ever, in particular for very large scale problems with special structure other “specially
tailored” inner products play a major role.

Definition 5.3. Positive definite matrix

A matrix A ∈ Rn×n is called positive definite if it is symmetric (AT = A) and
satisfies

�x, Ax�euklid = xTAx > 0

for all x �= o.

Example 5.4. Each diagonal matrix D ∈ Rn×n with positive entries on the diagonal is
a positive definite matrix.

Let A ∈ Rn×n be a positive definite matrix. Then the following defines an inner product
on Rn:

�x,y�A := �x, Ay�euklid = xTAy
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Our abstract assumptions already yield all the useful formulas, known from our standard
inner product:

Proposition 5.5.

Let �·, ·� be an inner product on a subspace V ⊂ Rn and � · � its associated norm.
Then for all x,y ∈ V and λ ∈ R, we have:

(a) |�x,y�| ≤ �x��y� (Cauchy-Schwarz inequality). Equality holds if and only if x
and y are colinear (written as x � y).

(b) The norm fulfils three properties:

(N1) �x� > 0 for all x �= o, and �x� = 0 only for x = o,

(N2) �λx� = |λ| �x�,
(N3) �x+ y� ≤ �x�+ �y�.

Proof. We show the Cauchy-Schwarz inequality (CSI) in a short proof. Let y �= o,
otherwise the CSI reads 0 = 0.

For any λ ∈ R the binomial formula yields:

0 ≤ �x− λy�2�y�2 = �x�2��y�2 − 2λ�x,y��y�2 + λ2�y�4.

(This is zero, if y = o, or x = λy, i.e. x and y are colinear). Setting λ = �x,y�/�y�2,
we obtain

0 ≤ �x�2�y�2 − 2�x,y�2 + �x,y�2 = �x�2�y�2 − �x,y�2.

The norm properties are left as an exercise.

No matter which inner product we are using, we can define orthogonality as follows:

x ⊥ y :⇔ �x,y� = 0.
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A norm for matrices

Once we can measure the size of a vector v by a norm �v�, we may think about measuring
the “size” of a linear map. Consider A ∈ Rm×n, and w = Av. Then the following quotient

�w�Rm

�v�Rn

=
�Av�Rm

�v�Rn

tells us, how much longer (or shorter) w = Av is, compared to v. A should be “large”,
if it produces long vectors from short ones, and “small”, if it produces short vectors from
long ones. Thus, we may define

�A� := max
v �=0

�Av�Rm

�v�Rn

,

so that we have:
�w�Rm = �Av�Rm ≤ �A��v�Rn .

It is not easy to compute this norm. We will consider a possibility later.

5.2 Orthogonal projections

5.2.1 Orthogonal projection onto a line

Imagine you ride a rowboat on a river. You want to go in a direction r �= o. However
water flows in direction x, which is not parallel to r.


