
3.11 Solving systems of linear equations 35

Attention!

Do not use equation E �
1 anymore at this point!

Otherwise, you would bring the variable x1 back in the game. VL8
↓

Gauß with a bug

We start with a square matrix A ∈ Rn×n. Let us write �A := (A|b) as a row matrix:

�A = (A|b) =




a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
an1 an2 . . . ann bn


 =




�αT
1

�αT
2
...
�αT
n




So aij is the jth entry of �αT
i .

We can eliminate a21 by adding rows: �αT
2 � �αT

2 − λ2�αT
1 , where λ2 =

a21
a11

.

This can be written in terms of a matrix, and we obtain:

Z2−λ21(A|b) =




a11 a12 . . . a1n b1
0 ã22 . . . ã2n b̃2
a31 a32 . . . a3n b3
...

...
...

...
an1 an2 . . . ann bn




=




�αT
1

�αT
2 − λ2�αT

1

�αT
3
...
�αT
n




Now we can do the same with all other rows, defining λi =
ai1
a11

, and computing:

Zn−λn1 . . . Z2−λ21� �� �
L−1
1

(A|b) =




a11 a12 . . . a1n b1
0 ã22 . . . ã2n b̃2
...

...
...

...
0 ãn2 . . . ãnn b̃n


 =




�αT
1

�αT
2 − λ2�αT

1
...

�αT
n − λn�αT

n


 = L−1

1 (A|b)

Since L−1
1 substracts the first row from all others, its inverse is easily seen to be the matrix

that adds this row to all others:

L−1
1 =




1
−λ2 1

... . . .
−λn 1


 , L1 =




1
λ2 1
... . . .
λn 1




Once, we have eliminated the entries a21 . . . an1. We can do the same with ã32 . . . ãn2.
Here we use factors λ̃i =

ãi2
ã22

36 3 Matrices and linear systems

We then obtain:

L−1
2 L−1

1 (A|b) =




a11 a12 a13 . . . a1n b1
0 ã22 ã23 . . . ã2n b̃2
0 0 â33 . . . â3n b̂3
...

...
...

...
...

0 0 ân3 . . . ânn b̂n




It (luckily) turns out, that

L1L2 =




1
λ2 1

λ3 λ̃3 1
...

... . . .
λn λ̃n 1




If we do this column by column, (and don’t run out of hats) we obtain:

L−1
n−1 . . . L

−1
1� �� �

L−1

(A|b) =




u11 . . . u1n c1
.

...
unn cn


 = (U |c).

where L is unit lower triangular:

L =




1
l21 1
...
ln1 . . . ln(n−1) 1




LU-decomposition A = LU

We thus have L−1A = U , and L−1b = c. Multiplication by L yields the famous
LU -decomposition:

A = LU, b = Lc.

Here L is lower triangular, and U is upper triangular. Once, we have decomposed A, we
can, for given b compute x as follows:

solve Lc = b ”forward substitution“
solve Ux = c ”backward substitution”

3.11 Solving systems of linear equations 37

Then Ax = LUx = Lc = b.

Gaussian elimination without pivoting (A ∈ Rn×n)

(U |c) = (A|b), L = 1n

for j = 1 . . . n (loop over columns)
for i = j + 1 . . . n (loop over rows)

lij =
uij

ujj

uij = 0 (eliminate entry)
for s = j + 1 . . . n

uis = uis − lijujs (subtract remaining entries)
ci = ci − lijcj (subtract rhs)

• We recognise three nested loops, and thus, the cost of this algorithm is proportional
to n3.

• After that, we have to perform backward substitution to compute x from c.

• If b is only known after the decomposition, we can compute c by forward substitu-
tion.

• In computer libraries A is overwritten by L and U . The upper triangular part is
used to store U , the lower triangular part is used to store L:

u11 u1n

l21
.

...
ln1 . . . ln(n−1) unn

This is called in place factorisation. It is possible, since we know anyway that U is
zero below the diagonal, L is zero above the diagonal, and lii = 1. We may call this
storage matrix L\U .

38 3 Matrices and linear systems

Example 3.51. LU-factorisation:

We do the row operation and save them in the matrix L:

A =




2 1 1
4 4 6
−2 3 9


 =




1 0 0
2 1 0
−1 0 1







2 1 1
0 2 4
0 4 10


 =




1 0 0
2 1 0
−1 2 1




� �� �
=:L




2 1 1
0 2 4
0 0 2




� �� �
=:U

Or if one uses the storage-saving notation:

A =




2 1 1
4 4 6
−2 3 9


 �




2 1 1
2 2 4
−1 4 10


 � L\U =




2 1 1
2 2 4
−1 2 2


 ,

For a right-hand side b, one simply does the same row calculation steps:

b =




1
1
1


 �




1
−1
2


 �




1
−1
4


 =: c

Alternatively: c := L−1b. For finding then the (unique) solution of Ax = b, just
compute x = U−1c as usual.

The bug:

• What, if ujj is zero at some stage of the computation? Then we have division by 0.

• Also, on the computer, if ujj is very small, say 10−14, then due to round-off error,
problems may also occur.

Remark: Gaussian elimination or LU-decomposition?

For solving a system Ax = b you have now two options:

(a) Gaussian elimination of (A|b) without memorising the row operations.

(b) LU -decomposition of A with memorising the row operations in the matrix L.

If you are just interested in the solution(s) of a given LES, then you will just do the
Gaussian elimination step by step until you reach the upper triangle form (or the row
echelon form, see next section).

Example 3.52. Let us a look at a higher dimensional and non-square example:

E1: x1 + 2x2 + x4 = 3
E2: 4x1 + 8x2 + 2x3 + 3x4 + 4x5 = 14
E3: 2x3 + 3x4 + 12x5 = 10
E4: −3x1 − 6x2 − 6x3 + 8x4 + 4x5 = 4

(3.7)

3.11 Solving systems of linear equations 39

You should immediately rewrite this in an augmented matrix form:

(A|b) =




E1: 1 2 0 1 0 3
E2: 4 8 2 3 4 14
E3: 0 0 2 3 12 10
E4: −3 −6 −6 8 4 4




The entry in grey 1 is first one we have to consider. All entries below should get zero
after the first elimination.

• multiply 4

1
= 4 to E1 and subtract the result from E2,

• multiply −3

1
= (−3) to E1 and subtract the result from E4.




x1 x2 x3 x4 x5

E1: 1 2 0 1 0 3
E2: 4 8 2 3 4 14 −4·E1

E3: 0 0 2 3 12 10
E4: −3 −6 −6 8 4 4 +3·E1


 �

The next number on the diagonal is a zero and it seems like that our algorithm has to stop
here. However, since below there are also zeros, the column is already eliminated. We
can just ignore the variable x2 at this point and just restart the algorithm with starting
point 2 .

Just subtract the equation E �
2 with the right factor from the other rows: 2

2
= 1 times

from E �
3 and −6

2
= (−3) times from E �

4. We get:




x1 x2 x3 x4 x5

E�
1: 1 2 0 1 0 3

E�
2: 0 0 2 −1 4 2

E�
3: 0 0 2 3 12 10 −1·E�

2

E�
4: 0 0 −6 11 4 13 +3·E�

2


 �

Next variable is x4. Now we consider 4 . Multiply E ��
3 with 8

4
= 2 and subtract from

equation E ��
4 :




x1 x2 x3 x4 x5

E��
1 : 1 2 0 1 0 3

E��
2 : 0 0 2 −1 4 2

E��
3 : 0 0 0 4 8 8

E��
4 : 0 0 0 8 16 19 −2·E��

3


 �

Now, we cannot use any rows for elimination and we are finished. We get the following

40 3 Matrices and linear systems

result:




x1 x2 x3 x4 x5

E����
1 : 1 2 0 1 0 3

E����
2 : 0 0 2 −1 4 2

E����
3 : 0 0 0 4 8 8

E����
4 : 0 0 0 0 0 3


 (3.8)

This is not a triangle matrix like in Example 3.42 but an upper triangle matrix by defin-
ition since below the diagonal, there are just zeros. This form is called the row echelon
form and defined below.

3.11.4 Row echelon form

Definition 3.53. Row echelon form, pivot element

A matrix A ∈ Rm×n in the form of the left-hand side of (3.8) is called
row echelon form. This means that the matrix A fulfils:

• all zero rows, if any, are at the bottom of the matrix,

• for each row: the first nonzero number from the left is always strictly to the
right of the first nonzero coefficient from the row above it.

This leading nonzero number in each row is called the pivot.

In the row echelon form we can put the variable into two groups:

Definition 3.54. Free and leading variables

Variables in the column of a pivot are called leading variables.
The other variables are called free variables.

Example 3.55. Looking at equation (3.8) again, we can distinguish the variables




x1 x2 x3 x4 x5

G����
1 : 1 2 0 1 0 3

G����
2 : 0 0 2 −1 4 2

G����
3 : 0 0 0 4 8 8

G����
4 : 0 0 0 0 0 3


 (3.9)

In this example x1 , x3 and x4 are the leading variables and x2 and x5 are free.

• Free variables can be chosen independently in R.
• The leading variables are chosen dependently of the free variables.

3.11 Solving systems of linear equations 41

Example 3.56.

The LES



x1 x2 x3 x4 x5

E1: 1 2 0 1 0 3

E2: 0 0 2 −1 4 2

E3: 0 0 0 4 8 8


 (3.10)

is already in row echelon form and can be equivalently written as



x1 x3 x4

E1: 1 0 1 3− 2 x2

E2: 0 2 −1 2− 4 x5

E3: 0 0 4 8− 8 x5


 (3.11)

and backward substitution gives us the solution set:

S=








x1
x2
x3
x4
x5


 =




1− 2x2 + 2x5
x2

2− 3x5
2− 2x5

x5


 =





+ x2





+ x5





 : x2 , x5 ∈ R





Corollary 3.57.

If A ∈ Rm×n is a row echelon matrix, then rank(A) is the number of leading variables
and dim(Ker(A)) is the number of free variables.

Proof. Obviously, the columns with pivots are linearly independent vectors where the
columns with free variables are a linear combination of the other ones.

In the next section, we will generalise what we did in the example before.

3.11.5 Gaussian elimination with pivoting and PA = LK
decomposition

Now we consider the general case of Ax = b with non-square A ∈ Rm×n. Here the role of
the upper triangular U is played by a matrix K in row echelon form, see Definition 3.53.

42 3 Matrices and linear systems

Pen-and-paper strategy: ”non-zero pivoting“

Remark: Pivot search
In other words: If the next entry that we want to choose as a pivot is zero, we just
search the rest of the column below for a non-zero entry and switch the rows.

Example 3.58. Invertible matrix (with pivoting):



2 3 4
4 6 9
2 4 6


 =




1 0 0
2 1 0
1 0 1







2 3 4
0 0 1
0 1 2


 = (P2↔3)

2




1 0 0
2 1 0
1 0 1


 (P2↔3)

2




2 3 4
0 0 1
0 1 2




= P2↔3




1 0 0
1 1 0
2 0 1







2 3 4
0 1 2
0 0 1




3.11 Solving systems of linear equations 43

Or if one uses the storage-saving notation:



2 3 4
4 6 9
2 4 6


 �



2 3 4
2 0 1
1 1 2


 (P2↔3)�



2 3 4
1 1 2
2 0 1




Example 3.59. Invertible matrix (with hindsight and pivoting)



2 3 4
4 6 9
2 4 6


 (P2↔3)�




2 3 4
2 4 6
4 6 9


 �



2 3 4
1 1 2
2 0 1




Gaussian elimination with pivoting (A ∈ Rm×n)

K = A, L = 1m, c = b, r = 1, Prow = 1m

for j = 1 . . . n (loop over columns)
perform pivot search for the first non-zero element of K at or below krj

if ipivot was found, exchange row r and row ipivot of L\K, c, and Prow

for i = r . . .m (loop over rows)
lir =

kij
krj

kij = 0
for s = r + 1 . . .m

kis = kis − lirkrs
cr = cr − lircr

r = r + 1 consider the next row

Example 3.60. non-square matrix (no pivoting needed here)



1 2 1 2
1 2 2 3
2 4 3 5


 =




1 0 0
1 1 0
2 0 1







1 2 1 2
0 0 1 1
0 0 1 1




44 3 Matrices and linear systems

=




1 0 0
1 1 0
2 1 1







1 2 1 2
0 0 1 1
0 0 0 0




We observe that rank(A) = 2.

Example 3.61. Modified Example: with pivoting



1 2 1 2
1 2 1 3
2 4 3 5


 =




1 0 0
1 1 0
2 0 1







1 2 1 2
0 0 0 1
0 0 1 1




= P2↔3




1 0 0
2 1 0
1 0 1







1 2 1 2
0 0 1 1
0 0 0 1




The result of pen-and-paper pivoting

Although this exchange of rows happens during the course of elimination, the outcome of
the resulting algorithm for matrices A can be written as

ProwA = LK,

where in Prow all the performed permutations, and K is in row echelon form. Hence, for
a right hand side b we may solve Ax = b as follows:

w = Prowb (row permutations)
Lc = w (forward substitution)
Kx = c (backward substitution)

Then ProwAx = LKx = Lc = w = Prowb. Usually, Prow is not stored as a matrix, but
rather as a vector p of indices: wi = bpi .

Example 3.62. We look at the example:

E1: 2x3 + 3x4 + 12x5 = 10
E2: 4x1 + 8x2 + 2x3 + 3x4 + 4x5 = 14
E3: x1 + 2x2 + x4 = 3
E4: −3x1 − 6x2 − 6x3 + 8x4 + 4x5 = 1

(3.12)

As always:

(A|b) =




E1: 0 0 2 3 12 10
E2: 4 8 2 3 4 14
E3: 1 2 0 1 0 3
E4: −3 −6 −6 8 4 1




We need a row exchange.

Let us exchange E1 with E3:


E1: 0 0 2 3 12 10 �
E2: 4 8 2 3 4 14 |
E3: 1 2 0 1 0 3

�

E4: −3 −6 −6 8 4 1


 �




E�
1: 1 2 0 1 0 3

E�
2: 4 8 2 3 4 14

E�
3: 0 0 2 3 12 10

E�
4: −3 −6 −6 8 4 1




Now, there is a gray 1 that we will use for the subtraction:

3.11 Solving systems of linear equations 45

• Subtract 4

1
= 4 times E �

1 from E �
2,

• subtract −3

1
= (−3) times E �

1 from E �
4.

Here the solution:




x1 x2 x3 x4 x5

E�
1: 1 2 0 1 0 3

E�
2: 4 8 2 3 4 14 −4·E�

1

E�
3: 0 0 2 3 12 10

E�
4: −3 −6 −6 8 4 1 +3·E�

1


 �

Also, x2 remains only in row 1. Hence, we do not have to do anything with x2. We can
go to x3.

There the gray 2 in E ��
2 is the next pivot. Subtract E ��

2 with the right multiple (2

2
= 1)

from E ��
3 . Also subtract −6

2
= (−3) times E ��

2 from E ��
4 . We get:




x1 x2 x3 x4 x5

E��
1 : 1 2 0 1 0 3

E��
2 : 0 0 2 −1 4 2

E��
3 : 0 0 2 3 12 10 −1·E��

2

E��
4 : 0 0 −6 11 4 10 +3·E��

2


 �

Look at x4. Here, 4 is the pivot. We subtract E ���
3

8

4
= 2 times from E ���

4 :




x1 x2 x3 x4 x5

G���
1 : 1 2 0 1 0 3

G���
2 : 0 0 2 −1 4 2

G���
3 : 0 0 0 4 8 8

G���
4 : 0 0 0 8 16 16 −2·G���

3


 �

The elimination algorithm ends. This is the wanted solution in row echelon form




x1 x2 x3 x4 x5

E����
1 : 1 2 0 1 0 3

E����
2 : 0 0 2 −1 4 2

E����
3 : 0 0 0 4 8 8

E����
4 : 0 0 0 0 0 0


 (3.13)

Can you write down the set of all solutions S?

46 3 Matrices and linear systems

3.12 Looking at columns and maps

Ax =


a1 · · · an






x1...
xn


 = x1


a1


+ · · ·+ xn


an




Ran(A) = {Ax : x ∈ Rn} = {x1a1 + . . .+ xnan : x1, . . . , xn ∈ R} ⊂ Rm. (3.14)

Corollary 3.63. Solvability in the column picture

For a matrix A ∈ Rm×n and vector b ∈ Rm the following claims are equivalent

(i) Ax = b has at least one solution,

(ii) b ∈ Ran(A),

(iii) b can be written as a linear combination of the columns from A.

Rn Rm

Ran(A)

x Ax

b
c

fA

b ∈ Ran(A) ⇒ Ax = b has at least one solution
c /∈ Ran(A) ⇒ Ax = c has no solution

Example 3.64. Let A =
�
3 6
1 2

�
.Then Ax = b has at least one solution if and only if

b ∈ Ran(A)

3.12 Looking at columns and maps 47

This means that b ∈ R2 lies on the line through
�
0
0

�
and

�
3
1

�
.

Remember that for each matrix A there is a linear map fA : Rn → Rm, cf. section 3.3,
defined by

x ∈ Rn
fA�→ Ax ∈ Rm.

fA(Rn) = {fA(x) : x ∈ Rn} = {Ax : x ∈ Rn} = Ran(A).

Hence, we find the following:

48 3 Matrices and linear systems

Proposition 3.65. Unconditional solvability needs surjectivity of fA)

For a matrix A ∈ Rm×n the following claims are equivalent:

(i) The LES Ax = b has for every b ∈ Rm at least one solution x.

(ii) All b ∈ Rm lie in Ran(A).

(iii) Ran(A) = Rm.

(iv) rank(A) = m ≤ n.

(v) The row echelon form of A, denoted by A�, has a pivot in every row.

(vi) fA is surjective.

0

0

0

0

0

0

0

0 0 0

m

n Row echelon form A� of A:

• each row has a pivot
• There are no zero rows in A�.
• We will never have (0 · · · 0 | c �= 0) in the

last row.

Example 3.66. Consider a 3× 5 matrix A and calculate the row echelon form A�:

A =




1 4 0 2 −1
−1 2 −2 −2 3
−3 0 −4 −3 8


 � · · · � A� =




1 4 0 2 −1

0 6 −2 0 2

0 0 0 3 1




Each row of A� has a pivot and (v) from Proposition 3.65 holds. One immediately sees
rank(A) = 3 = m ≤ n = 5.

(i) says that the LES Ax = b has for every right-hand sides b ∈ R3 at least one solution.

Now we go to the uniqueness

3.12 Looking at columns and maps 49

Proposition 3.67. Unique solution (injectivity of fA)

For a matrix A ∈ Rm×n the following claims are equivalent:

(i) Ax = b has for every b ∈ Rm at most one solution x.

(ii) Ax = o has only the solution x = o.

(iii) Ker(A) = {o}.

(iv) rank(A) = n ≤ m.

(v) The row echelon form of A, denoted by A�, has in every column a pivot.

(vi) fA is injective.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

m

n

Row echelon form A� of A:

• Each column has a pivot.
• All variables are leading variables.
• There are no free variables.
• It is not possible to have more than one solution.

Example 3.68. Consider a 4× 3 matrix A and calculate the row echelon form A�:

A =




2 3 0
2 2 5
−4 −5 −3
4 7 1


 � · · · � A� =




2 3 0

0 −1 5

0 0 −8
0 0 0




Each column in A� has a pivot. One also sees: rank(A) = 3 = n ≤ m = 4.

The LES Ax = b has exactly the solution x =

�
1
0
0

�
for b =




2
2
−4
4


; but for b =



0
0
0
1




there is no solution x.

Both things together:

50 3 Matrices and linear systems

Proposition 3.69. Existence and Uniqueness of a solution

For a matrix A ∈ Rm×n the following claims are equivalent:

(i) The LES Ax = b has for every b ∈ Rm a unique solution.

(ii) Ker(A) = {o} and Ran(A) = Rm.

(iii) rank(A) = m = n, i.e. A is quadratic with maximal rank.

(iv) fA is bijective.

0

0

0

0

0 0

m

n Row echelon form A� of A:

• Each column and row has a pivot.
• The matrix has to be quadratic.
• We have rank(A) = m = n.
• The row echelon form A� has triangle form.

Proposition 3.70. m=n: square matrices

For a quadratic A ∈ Rn×n the following claims are equivalent:

(i) The LES Ax = b has a solution for for every b ∈ Rn.

(ii) The LES Ax = b has for some b ∈ Rn a unique solution.

(iii) The LES Ax = b has a unique solution for every b ∈ Rn.

(iv) Ker(A) = {o}

(v) Ran(A) = Rn.

(vi) rank(A) = n.

(vii) For A, the row echelon form A� has a pivot in each row.

(viii) For A, the row echelon form A� has a pivot in each column.

(ix) fA is surjective.

(x) fA is injective.

(xi) fA is bijective.

Box 3.71. Fredholm alternative
For square matrices, we have either both claims below or neither of them:

• unconditional solvability (fA ist surjective),
• unique solutions (Ker(A) = {o}, hence fA is injective)

3.12 Looking at columns and maps 51

Summary

• By Rm×n we denote number tables with m rows and n columns.

• We call these number tables matrices and can naturally scale them and add them
Both operations in Rm×n are realised by doing these inside the components.

• Linear equations look like

constant · x1 + constant · x2 + · · · + constant · xn = constant .

• Systems of linear equations (LES) are finitely many of these linear equations.

• A solution of the system is a choice of all unknowns x1, . . . , xn such that all equations
are satisfied.

• A short notation for LES is the matrix notation: Ax = b.

• This notation leads us to the general matrix product .

• Each matrix A induces a linear map fA : Rn → Rm. A linear map satisfies two
properties (·) and (+).

• If fA is bijective, the corresponding matrix is invertible with respect to the matrix
product.

• Linearly independent vectors are the most efficient method to describe a linear sub-
space.

• A linearly independent family that generates the whole subspace U is called a basis
of U .

• Range, rank and kernel are important objects for matrices.

• For solving a LES, we use Gaussian elimination or equivalently LU -decomposition.
In the general case the upper diagonal matrix U is substituted by a row echelon
form.

• Solvability and unique solvability can be equivalently formulated and, for example,
read from the row echelon form.

