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4 l > 3 Matrices and linear systems

Proposition & Definition 3.23. Coefficients with respect to a basis

Let B =(v1,...,Vg) be a basis of a subspace V-C R". Eachx € V' can be written as
a linear combination \1vq +. ..+ AV where the coefficients Ay, ..., Xg are unique.
They are called the coordinates of x with respect to B.

EXMgLJ V=R", jz(c,,_,.,e,h) weV

X =
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Theorem 3.24. Steinitz’s theorem

Consider a basis B = (vy, ... ,vk) of a subspace V.C R™ and a linearly independent
set of vectors’ A = (ay, ... ,ag) C V. Then we can extend A to a basis of V by
adding k — € elements of B.

¢

/c_’\) hcw Lan‘r

) du-..;v __7az (;,. I ,,_},,L.,_)
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Sketch of the proof. Pack B and A together to a linearly dependent set, and remove vec-
tors (starting with elements of B) until it is linearly independent. One has to show now,
that the resulting set has again k elements, and that A remains untouched. m

D allomkic A tndachn,
Dl

Now, we can record that all bases of V' have the same number of elements.

Corollary 3.25.

Let V' be a subspace of R™ and let B = (vy,... ,vy be a basis of V.. Then:

(a) Each family (wy, ..., w,,) consisting of vectors from V where m > k z}irlﬁz_egﬁl_l
dependent.
pia

(b) Each basis of V' has ezactly k/elements.

/"\1. L’Ln‘r [\/\/, he baris
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So we can define:
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Definition 3.26. Dimension of a linear subspace

LetV be a subspace of R™, and let B be a chosen basis of V. The number of elements
in B is well-defined and called the dimension of V', written as dim(V'). As a special
case, we set dim({o}) = 0.

P

The unit vectors ey, ...,e, in R” form a basis. The linear indepencency can be seen by:
T
&e +...+zze, =0 = : =o0 == z)=...=x, =0.
p- A .
We obtain, as expected: h-dia
dim(R") = n.

Rule of thumb:

The dimension of a vector space V' says how many independent degrees of freedom
are needed to build linear combinations of all vectors in V.

—
_I Theorem 3.27. ! J""‘!"J"“" K > >

=4
Let U and V' be two linear subspaces of R™. , S ] - \
(i) One has dim(U) = dim(V)"if and only if there exists a linear bijective map
bet U andV. = ; T
etween U an S [',(..., > "J- A*‘” .....,]
(is) If U CV and dim(U) = dim(V'), then U = V:
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| Example 3.28.

The following subspaces of R™ are very important:
e The trivial subspace {0} with' dim({0}) = 0 .

e (Lines L (through the origin): dim(L) = 1

e Planes P (through the origin): dim(P) = 2 é7’ lu\v‘-,,)

ner ML "
o o 0 (1] -
e Hyperplanes H (through the origin): dim(H) =n—1 -2 Ol rad W

5

4

The dimension of an‘affine subspace W = uy+U (where U is a linear subspace) is usually
set to the dimension of U.

Corollary 3.29.

A family consisting of more than n vectors in R™ is always linearly dependent.

A ;,L) ﬁ) (ﬁ l)arir o/ IR“
Proof. Use Corollary 3.25. (1 ) { Ry ! 1 ’ o - O

J

3.8 lIdentity and inverses

For each n € N, we define the identity matrix 1, by - I , E . IJ, fd'

z

nenlad

1o 0 ---0 '/ ¢1m~+4
0 1 0 : h v.r.7.
1, = lo o 1 . | eR¥" ﬂ.-B - B bmatriy
o : 0 —_— “"-““-j,(.
0 -+ -~ 0 1 :f:ﬂ..
£ D A

R —SR” oY = >
541”- K >IR / (X‘——>ﬂux—)<) ' id=f4n >
X > X

jhw«s‘tr W, r.‘l. "LL hﬂ(n; me-'fL'c LLTS AA’ = 4,. ; )Z\'A = /ﬂ;.
~ -

—~> A=A iwen of A.
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Definition 3.30. Invertible Matrix, A~!

We call a square matriz A € R™ ™ invertible or nonsingular if the corresponding

linear mapfa s R" = R™ is bijective. Otherwise, we call A singular. A matriz A
with fz = (fa)™" is called the inverse of A and is usually denoted by A~'. We have

fA—l o fA =1d and fA o fA—l = 'Ld,

which means fa—1 = (fa)™*
For the matrices, this means:

AN (Ax) =x and ~A(AT'x)=x  forall xeR™
In short: A A =1 and AA 1 =1

S )‘4-/, (nverse l/ A,

[ R

If A is invertible, the linear system Ax = b has the unique solution x = A~'b.

_I Theorem 3.31. |

Let' A € R™™ be a square matrixz. Then

fa injective < fa surjective
e

N—J

Hence, if one of these cases holds, then(fa is already bijective, i.e., invertible.

Proof. This is a classical dimension argument: ? (a"""' ¢n) = (:ﬂ“) . J’(‘h ) )
A .\"‘ o} R

(=): If fa is injective, then n linearly independent vectors form a basis for ]R” Th1

@ s means that f, is surjective.

vl (<): If fa is surjective, then each n vectors that span the R™ form a basis for R", so f4
is injective. O

Toe eud y€lK“, you ]('.,( an xR wilt )=y,
Y =H (e nfla+ -+ xg%l .
\ b, e b, ikt = 31 3 ;
For two invertible matrices A and B we have the formula: O N O N

F : C
~, e . -
Q5 GRm—kl Jrotg = I

S If f : R™ — R” is a linear map that is bijective, then f=1 : R™ — R™ is also a linear

J ) - F'(00) % (300 = 3x <2500
? ]

[7L‘M is lXCiJJ’ ome X il {()();_-7]
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3.9 Transposition

tv-}.'t.) 4[.4. nr(cr 0/ Co(l«.u.,- Qvul nNPwy

We already know transposition of column vectors:

T
aq
=(ay ... ay)
Qn
and similarly, we can define:
a1
(al . an>T = >
Qn
Then we have the simple formula (a)? =a.

For a matrix, we can do the same:

Definition 3.32. Transpose

For a matriz A € R™", we define a matriv’ AT € R™™ and call it the transpose

of A. The '™ column of A becomes the i'™™ row of AT and the j" row of A becomes
the 3t column of AT :

a1 CL12 oo Qup a1 @21 ... Qmi

gy A22 ... Q2q Q19 A2 ... Gm2
For A= > ] ,  we define AT = | &5

m1 Am2 ... Gmp Aip G2 ... Qmp

Example 3.33. (a)

c R4><2

_= O N =
S W O N
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(c)

A=(4 5 6 T)eR™ =  A'= e RY

N O Ot =~

Since we have exchanged the roles of rows and columns, the order of multiplication
changes, too:
(Ax)"T = xTAT x'A = (ATx)".
Just as with matrix-vector multiplication, transposition reverses the order of matrix-
matrix multiplication:
(AB)T = BT AT,

In particular, if A is invertible, then

I=a"=@A1'ar=ATA4"HT = A" is invertible and (A") ' = (A HT.

S—

Example 3.34. We find

(\0 2 2
(123>, n . - _(11 —4 9>
456/ \y 4 ] 26 —13 24
and NN
004 1 1 4 11 26
-2 -1 0|-[25]=|-4 -13
2 2 1 3 6 9 24

Proposition 3.35. Some rules for transposition

(a) For all A, B € R™" we have: (A+ B)T' = AT + B”. .'L" u,..-lr ’
(b) For all A € R™™ and for all A € R, we have: (A- A)T =\ . AT,

(c) For all A € R™" we have: (AT)T = A.

(d) For all A € R™™ and for all B € R™" we have: (A-B)" = BT - AT,

(e) If A € R™™ is invertible, then AT is also invertible and we get (AT)™ =
(A~HT.

(f) For all u,v € R™ we have: u’ - v =vT -u = (u,v).
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Proof. If we denote the entries of a matrix A by A;;. Then we have
(AT)ZJ == Ajl for all Z,j
and from this one can prove all properties. For example for showing (d), we see \/

(BT . AT)ij — Z(BT ik AT k] ZAJkBkz = A : B)J‘Z = ((A : B)T)ij
k

for all 7, j. O]

P

Proposition 3.36. What has A’ to do with the inner product?

Forx e R", y € R™ and A € R™*"  we have for the standard inner product:

(¥ = (x, ATy).

Proof. We already know that for all u,v € R", we have (u,v) =u’v. Hence, we conclude
that for x € R", y € R™ and A € R™*" the following holds (Ax,y) = (Ax)Ty =
xT ATy = (x, ATy). O

Moreover, AT is the only matrix in B € R"*™ that satisfies the equation (Ax,y) = (x, By)
for all x € R™ and y € R™. Therefore, some people use this as the definition for A”.

| Definition 3.37. Symmetric and skew-symmetric matrices

One typical notation for quadratic matrices: &€ R"*"
o If AT = A, then A is called symmetric.

o IfAT = — A then A is called skew-symmetric.

Example 3.38. (a)

13 -4 1 .3
A=13 0.5 is symmetric since AT =3 05 | = A.
—4 5 3 —4 5 3
(b)
0 3 4 0 -3 —4
A=[~3 10 -5 is skew-symmetric since AT =3 0 5 | =-A4
D 5@ 4 =5 0

By definition, all skew-symmetric matrices have only zeros on the diagonal.
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3.10 The kernel, range and rank of a matrix

3.10 The kernel, range and rank of a matrix

Definition 3.39. Range and kernel of matrices

27

Ja: R"—R"

Let A € R™ "™ The set
Ran(A) := {Ax:x € R"} C R™

is called the range or image of the matrix A.
The set

Ker(A4) = {x e R": Ax =0} C R"

is called the kernel or/nullspace, of the matriz A.

k)

R"—> R" \ Ren(5a) =:Ren(A)
x > Ax { j;({c"}) = ke~ (A)

90”. ANe A‘\t..r S"‘L"I’OCGS' ’

Since our ultimate goal is to understand linear systems of the formal

Ax = b,

~

=

we would like to know more about Ran(A) (because it tell us, for which b our system has
a solution) and Ker(A) (because it tells us about the uniqueness of solutions).

_I Definition 3.40. Rank of a matrix |
Let A € R™"™. The number

1s called the rank of the matrix A.

rank(A) := dim(Ran(A)) = dim(Span (ai, . . .

7an))-

We obviously have:

rank(A) < min{m,n}

A is said to have full rank, if rank(A) = min{m, n}.



