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Proposition & Definition 3.23. Coefficients with respect to a basis

Let B = (v1, . . . ,vk) be a basis of a subspace V ⊂ Rn. Each x ∈ V can be written as
a linear combination λ1v1+ . . .+λkvk where the coefficients λ1, . . . ,λk are unique.
They are called the coordinates of x with respect to B.

Theorem 3.24. Steinitz’s theorem
Consider a basis B = (v1, . . . ,vk) of a subspace V ⊂ Rn and a linearly independent
set of vectors A = (a1, . . . , a�) ⊂ V . Then we can extend A to a basis of V by
adding k − � elements of B.

Sketch of the proof. Pack B and A together to a linearly dependent set, and remove vec-
tors (starting with elements of B) until it is linearly independent. One has to show now,
that the resulting set has again k elements, and that A remains untouched.

Now, we can record that all bases of V have the same number of elements.

Corollary 3.25.

Let V be a subspace of Rn and let B = (v1, . . . ,vk) be a basis of V . Then:

(a) Each family (w1, . . . ,wm) consisting of vectors from V where m > k is linearly
dependent.

(b) Each basis of V has exactly k elements.

So we can define:
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Definition 3.26. Dimension of a linear subspace

Let V be a subspace of Rn, and let B be a chosen basis of V . The number of elements
in B is well-defined and called the dimension of V , written as dim(V ). As a special
case, we set dim({o}) = 0.

The unit vectors e1, . . . , en in Rn form a basis. The linear indepencency can be seen by:

x1e1 + . . .+ xnen = o ⇒



x1...
xn


 = o ⇒ x1 = . . . = xn = 0.

We obtain, as expected:
dim(Rn) = n.

Rule of thumb:
The dimension of a vector space V says how many independent degrees of freedom
are needed to build linear combinations of all vectors in V .

Theorem 3.27.
Let U and V be two linear subspaces of Rn.

(i) One has dim(U) = dim(V ) if and only if there exists a linear bijective map
between U and V .

(ii) If U ⊂ V and dim(U) = dim(V ), then U = V .
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Example 3.28.

The following subspaces of Rn are very important:

• The trivial subspace {0} with dim({0}) = 0

• Lines L (through the origin): dim(L) = 1

• Planes P (through the origin): dim(P ) = 2

• Hyperplanes H (through the origin): dim(H) = n− 1

The dimension of an affine subspace W = u0+U (where U is a linear subspace) is usually
set to the dimension of U .

Corollary 3.29.

A family consisting of more than n vectors in Rn is always linearly dependent.

Proof. Use Corollary 3.25.

3.8 Identity and inverses

For each n ∈ N, we define the identity matrix 1n by

1n :=




1 0 0 · · · 0

0 1 0
...

0 0 1
. . . ...

... . . . . . . 0
0 · · · · · · 0 1




∈ Rn×n.
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Definition 3.30. Invertible Matrix, A−1

We call a square matrix A ∈ Rn×n invertible or nonsingular if the corresponding
linear map fA : Rn → Rn is bijective. Otherwise, we call A singular. A matrix Ã
with fÃ = (fA)

−1 is called the inverse of A and is usually denoted by A−1. We have

fA−1 ◦ fA = id and fA ◦ fA−1 = id ,

which means fA−1 = (fA)
−1.

For the matrices, this means:
A−1(Ax) = x and A(A−1x) = x for all x ∈ Rn.

In short: A−1A = 1 and AA−1 = 1.

If A is invertible, the linear system Ax = b has the unique solution x = A−1b.

Theorem 3.31.

Let A ∈ Rn×n be a square matrix. Then

fA injective ⇔ fA surjective

Hence, if one of these cases holds, then fA is already bijective, i.e., invertible.

Proof. This is a classical dimension argument :

(⇒): If fA is injective, then n linearly independent vectors form a basis for Rn. This
means that fA is surjective.

(⇐): If fA is surjective, then each n vectors that span the Rn form a basis for Rn, so fA
is injective.

For two invertible matrices A and B we have the formula:

(AB)−1 = B−1A−1 .

Remark:

If f : Rn → Rn is a linear map that is bijective, then f−1 : Rn → Rn is also a linear
map.
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3.9 Transposition

We already know transposition of column vectors:



a1
...
an




T

= (a1 . . . an)

and similarly, we can define:

(a1 . . . an)
T =




a1
...
an


 ,

Then we have the simple formula (aT )T = a.

For a matrix, we can do the same:

Definition 3.32. Transpose

For a matrix A ∈ Rm×n, we define a matrix AT ∈ Rn×m and call it the transpose
of A. The ith column of A becomes the ith row of AT and the jth row of A becomes
the jth column of AT :

For A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn


 , we define AT :=




a11 a21 . . . am1

a12 a22 . . . am2
...

...
a1n a2n . . . amn


 .

Example 3.33. (a)

A =

�
1 2 0 1
2 0 3 0

�
∈ R2×4 ⇒ AT =




1 2
2 0
0 3
1 0


 ∈ R4×2.

(b)

A =

�
1 2
3 4

�
∈ R2×2 ⇒ AT =

�
1 3
2 4

�
∈ R2×2.
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(c)

A =

�
1 −2
−2 1

�
∈ R2×2 ⇒ AT =

�
1 −2
−2 1

�
∈ R2×2.

(d)

A =



1
2
3


 ∈ R3×1 ⇒ AT =

�
1 2 3

�
∈ R1×3.

(e)

A =
�
4 5 6 7

�
∈ R1×4 ⇒ AT =




4
5
6
7


 ∈ R4×1.

Since we have exchanged the roles of rows and columns, the order of multiplication
changes, too:

(Ax)T = xTAT xTA = (ATx)T .

Just as with matrix-vector multiplication, transposition reverses the order of matrix-
matrix multiplication:

(AB)T = BTAT .

In particular, if A is invertible, then

1 = 1T = (A−1A)T = AT (A−1)T ⇒ AT is invertible and (AT )−1 = (A−1)T .

Example 3.34. We find

�
1 2 3
4 5 6

�
·



0 −2 2
4 −1 2
1 0 1


 =

�
11 −4 9
26 −13 24

�

and 


0 4 1
−2 −1 0
2 2 1


 ·



1 4
2 5
3 6


 =




11 26
−4 −13
9 24


 .

Proposition 3.35. Some rules for transposition

(a) For all A,B ∈ Rm×n we have: (A+ B)T = AT + BT .

(b) For all A ∈ Rm×n and for all λ ∈ R, we have: (λ · A)T = λ · AT .

(c) For all A ∈ Rm×n we have: (AT )T = A.

(d) For all A ∈ Rm×n and for all B ∈ Rn×r we have: (A · B)T = BT · AT .

(e) If A ∈ Rn×n is invertible, then AT is also invertible and we get (AT )−1 =
(A−1)T .

(f) For all u,v ∈ Rn we have: uT · v = vT · u = �u,v�.
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Proof. If we denote the entries of a matrix A by Aij . Then we have

(AT )ij = Aji for all i, j

and from this one can prove all properties. For example for showing (d), we see

(BT · AT )ij =
�

k

(BT )ik(A
T )kj =

�

k

AjkBki = (A · B)ji = ((A · B)T )ij

for all i, j.

Proposition 3.36. What has AT to do with the inner product?

For x ∈ Rn, y ∈ Rm and A ∈ Rm×n, we have for the standard inner product:

�Ax,y� = �x, ATy�.

Proof. We already know that for all u,v ∈ Rn, we have �u,v� = uTv. Hence, we conclude
that for x ∈ Rn, y ∈ Rm and A ∈ Rm×n, the following holds �Ax,y� = (Ax)Ty =
xTATy = �x, ATy�.

Moreover, AT is the only matrix in B ∈ Rn×m that satisfies the equation �Ax,y� = �x, By�
for all x ∈ Rn and y ∈ Rm. Therefore, some people use this as the definition for AT .

Definition 3.37. Symmetric and skew-symmetric matrices

One typical notation for quadratic matrices:

• If AT = A, then A is called symmetric.

• If AT = −A, then A is called skew-symmetric.

Example 3.38. (a)

A =




1 3 −4
3 0 5
−4 5 3


 is symmetric since AT =




1 3 −4
3 0 5
−4 5 3


 = A.

(b)

A =




0 3 4
−3 0 −5
−4 5 0


 is skew-symmetric since AT =



0 −3 −4
3 0 5
4 −5 0


 = −A.

By definition, all skew-symmetric matrices have only zeros on the diagonal.
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3.10 The kernel, range and rank of a matrix

Definition 3.39. Range and kernel of matrices

Let A ∈ Rm×n. The set

Ran(A) := {Ax : x ∈ Rn} ⊂ Rm

is called the range or image of the matrix A.
The set

Ker(A) := {x ∈ Rn : Ax = o} ⊂ Rn

is called the kernel or nullspace of the matrix A.

Since our ultimate goal is to understand linear systems of the formal

Ax = b,

we would like to know more about Ran(A) (because it tell us, for which b our system has
a solution) and Ker(A) (because it tells us about the uniqueness of solutions).

Definition 3.40. Rank of a matrix

Let A ∈ Rm×n. The number

rank(A) := dim(Ran(A)) = dim(Span (a1, . . . , an)).

is called the rank of the matrix A.

We obviously have:

rank(A) ≤ min{m,n}

A is said to have full rank, if rank(A) = min{m,n}.


