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3.6 Linear maps

Each map that conserves the structure of our vector space Rn is called a linear map.
We already know that the only structure we have is the vector addition and the scalar
multiplication.

Definition 3.13. Linearity of maps

A map f : Rn → Rm is called linear if for all x,y ∈ Rn and λ ∈ R, we have:

f(x+ y) = f(x) + f(y) (+)

f(λx) = λf(x) ( · )

Rule of thumb:
Equation (+) means: First adding, then mapping = First mapping, then adding
Equation ( · ) means: First scaling, then mapping = First mapping, then scaling

We already know that for each matrix A ∈ Rm×n there is an associated map fA. This
map is indeed a linear map.

Proposition 3.14. fA is linear

Let m,n ∈ N, A ∈ Rm×n and fA : Rn → Rm with x
fA�→ Ax. Then the following

holds:

(a) For all x,y ∈ Rn we have

fA(x+ y) = fA(x) + fA(y), i.e. A(x+ y) = Ax+ Ay. (+)

(b) For all λ ∈ R and x ∈ Rn one has

fA(λx) = λfA(x), i.e. A(λx) = λAx. ( · )

Proof. This follows immediately from the properties of the matrix product in Proposi-
tion 3.12. However, it may be helpful to write down a direct proof for the case n = 2.

(a) Let x =
�
x1

x2

�
and y =

�
y1
y2

�
be vectors in R2. Then we have:

fA(x+ y) = A(x+ y) =


a1 a2




�
x1 + y1
x2 + y2

�
(3.2)
= (x1 + y1)a1 + (x2 + y2)a2

= x1a1 + x2a2 + y1a1 + y2a2
(3.2)
=


a1 a2




�
x1

x2

�
+


a1 a2




�
y1
y2

�

= Ax+ Ay = fA(x) + fA(y).



3.6 Linear maps 13

(b) Let λ ∈ R and x =
�
x1

x2

�
∈ R2. Then:

fA(λx) = A(λx) =


a1 a2




�
λx1

λx2

�
(3.2)
= (λx1)a1 + (λx2)a2

= λ(x1a1 + x2a2)
(3.2)
= λ


a1 a2




�
x1

x2

�
= λAx = λfA(x).

If we have a linear map f : Rn → Rm, we can write it as

f(x) = f(x1e1 + · · ·+ xnen) = x1f(e1) + · · ·+ xnf(en)

and immediately find:

Remark: Linear maps induce matrices

For each linear map f : Rn → Rm, there is exactly one matrix A ∈ Rm×n with
f = fA. In the columns of A, one finds the images of the canonical unit vectors:

A :=


f(e1) · · · f(en) .


 (3.6)

A is often called the transformation matrix of f .
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Rule of thumb: Linear map = lines stay lines

A linear map f : Rn → Rm conserves the linear structure: If U ⊂ Rn is a linear
subspace then also the image f(U) ⊂ Rm. Or in other words: Lines on the left stay
lines on the right:

f

(However, lines could shrink down to the origin.)

A linear map is completely determined when one knows how it acts on the canonical unit
vectors e1, . . . , en. Therefore, in R2, a good visualisation is to look at “houses”: A house H
is given by two points. Now what happens under a linear map fA associated to a matrix
A? One just have to look at the corners:

o� := fA(o) = A
�
0
0

�
= 0a1 + 0a2 = o

p� := fA(p) = A
�
1
0

�
= 1a1 + 0a2 = a1

q� := fA(q) = A
�
0
1

�
= 0a1 + 1a2 = a2

o p

q

a1

a2

o�

p�

q�fA

With the help of the linearity, we also know what happens with the other parts of the
house, for example the corners of the door:

Since t = 1
2
p and u = 1

4
p, we have:

fA(t) = fA(
1
2
p)

( · )
= 1

2
fA(p) =

1
2
p�

fA(u) = fA(
1
4
p)

( · )
= 1

4
fA(p) =

1
4
p�

o p

q r

s

u t
a1

a2

o�

p�

q� r�

s�

u� t�

fA

Example 3.15. A non-linear map

A map f : R2 → R2 given by

f :

�
x

y

�
�→

�
x− 1

5
(cos(πy)− 1)

y + 1
8
sin(2πx)

�
.

is not linear!

f



3.6 Linear maps 15

Example 3.16. Some linear house transformations

3

1

A =

�
3 0
0 1

�

1

2

B =

�
1 0
0 2

�

3

2

C =

�
3 0
0 2

�

−1

1

D =

�
−1 0
0 1

�

1

−1

E =

�
1 0
0 −1

�

−1

−1

F =

�
−1 0
0 −1

�

5

5

G =

�
5 0
0 5

�
H� = 5H

1

1

I =

�
1 0
0 1

�
H� = H

fI = id

1

1

J =

�
0 1
1 0

�

1

1

K =

�
3 1
1 2

�
L =

�
3 6
1 2

�
M =

�
3 0
1 0

�

1−1

1

N =

�
1 −1
1 1

�

√
2

O =

�
0 0
0 0

�

1

P =

�
1 0
0 0

�

1.5

Q =

�
0 0
0 1

�
R =

�
cos(π

6
) − sin(π

6
)

sin(π
6
) cos(π

6
)

�

π/6

1

1
3

−3

S =

�
−1 −1
−3 3

�
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3.7 Linear dependence, linear independence, basis and
dimension

We have seen that in R2 two vectors can be parallel (colinear):

There is a λ ∈ R with a = λb .

Similarly, in R3 three vectors can be in the same plane (coplanar) or not:

There are λ, µ ∈ R with a = λb+ µc .

If this is the case, we can build a loop of vectors, starting at o and ending at o again:

o = (−1)a+ λb+ µc .

Let us generalise this:

Definition 3.17. Linear dependence and indepedence

A family (v1, . . . ,vk) of k vectors from Rn is called linearly dependent if we find a
non-trivial linear combination for o. This means that we can find λ1, . . . ,λn ∈ R
that are not all equal zero such that

k�

j=1

λjvj = o .

If this is not possible, we call the family (v1, . . . ,vk) linearly independent. This
means that

k�

j=1

λjvj = o ⇒ λ1, . . . ,λk = 0

holds.

Example 3.18. Let us look at examples:

(a) The family (
�
1
0

�
,
�
1
1

�
,
�
0
1

�
) is linearly dependent since

�
1

1

�
=

�
1

0

�
+

�
0

1

�
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(b) (
�
1
0

�
,
�
1
1

�
,
�
2
2

�
) is linearly dependent.

(c) Each family which includes o is linearly dependent. Also each family that has the
same vector twice or more is linearly dependent.

(d)

e1 =




1
0
0


 e2 =




0
1
0


 e3 =




0
0
1




These are linearly independent vectors, because




0
0
0


 = λ1




1
0
0


+ λ2




0
1
0


+ λ3




0
0
1


 =




λ1

λ2

λ3




yields λ1 = λ2 = λ3 = 0.

If we add an arbitrary additional vector

a =




a1
a2
a3


 ,

we can combine it from the other three by setting λi = ai, which means:

a = a1e1 + a2e2 + a3e3

So the resulting set of vectors is linearly dependent.
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Proposition 3.19. Linear dependence

For a family (v1, . . . ,vk) of vectors from Rn the following claims are equivalent:

(i) (v1, . . . ,vk) is linearly dependent.

(ii) There is a vector in Span (v1, . . . ,vk) that has two or more representations as
a linear combination.

(iii) At least one of the vectors in (v1, . . . ,vk) is a linear combination of the others.

(iv) There is an i ∈ {1, . . . , k} such that we have

Span(v1, . . . ,vk) = Span(v1, . . . ,vi−1,vi+1, . . . ,vk) .

(v) There is an i ∈ {1, . . . , k} with vi ∈ Span(v1, . . . ,vi−1,vi+1, . . . ,vk).

Proof. Exercise!

Proposition 3.20. Linear independence

For a family (v1, . . . ,vk) of vectors from Rn the following are equivalent:

(i) (v1, . . . ,vk) is linearly independent.

(ii) Every vector in Span (v1, . . . ,vk) can be formed by linear combinations in
exactly one way.

(iii) None of the vectors in (v1, . . . ,vk) is a linear combination of the others.

(iv) For all i ∈ {1, . . . , k} we have:

Span(v1, . . . ,vk) �= Span(v1, . . . ,vi−1,vi+1, . . . ,vk) .

(v) For all i ∈ {1, . . . , k} we have vi /∈ Span(v1, . . . ,vi−1,vi+1, . . . ,vk).
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A simple consequence is:

Corollary 3.21.

If the family (v1, . . . ,vk) is linearly dependent, we can subjoin vectors and the res-
ulting family is still linearly dependent. On the other hand, if the family (v1, . . . ,vk)
is linearly independent, we can omit vectors and the resulting family is still linearly
independent.

Let now V be a subspace of Rn, which is spanned by the vectors v1, . . . ,vk ∈ Rn. Hence
V = Span(v1, . . . ,vk).

Question: Efficiency question:

How many vectors do we actually need to span V ?

Definition 3.22. Basis, basis vectors

Let V be a subspace of Rn. A family B = (v1, . . . ,vk) is called a basis of V if

(a) V = Span(B) and

(b) B is linearly independent.

The elements of B are called the basis vectors of V .

We can show that each subspace V ⊂ Rn has a basis. We define:


