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3.6 Linear maps ¢ ;I\«a‘fan)

Each map that conserves the structure of our vector space R™ is called a linear map.
We already know that the only structure we have is the vector addition and the scalar
multiplication.

| Definition 3.13. Linearity of maps

A map [ R" = R™ is called linear if for all x,y € R"® and \ € R, we have:

pe

) TR ;“R“’:_(’j =il Nddten in R® o
>

fOx) = Af(x) ()
Rule of thumb:
Equation (+) means: First adding, then mapping = First mapping, then adding
Equation ( - ) means: First scaling, then mapping = First- mapping, then scaling

We already know that for each matrix A € R™*" there is an associated map f4. This

map is indeed a‘linear map.
_ __ _‘f,q(") Ax

| Proposition 3.14. f, is linear

Let m,n € N, A € RR2¥% and fa : R" — R™ with x |—> Ax Then the following
. ™A
holds: /)‘\
o“."‘i‘u“ivg

(a) For all x,y € R" we have

fax +y) = fa(x) + fa(y), de Alx+y)=Ax+ Ay. (+)
\—\— —————
(b) For all A € R and x € R™ one has ’/ ‘0"'/‘*""(" rule
fax) = Afa(x), de. A(Mx) = IAx. _;l_

Proof. This follows immediately from the properties of the matrix product in Proposi-
tion 3.12. However, it may be helpful to write down a direct proof for the case n = 2.

(a) Let x = (2) and y = (z;) be vectors in R2. Then we have:

| | o (3.
fax+y)=Ax+y)= ail a|2 (;,;1 T zl) = (z1 +y1)ar + (v2 + y2)a
| 2 2

| /] | |
=ra; + ~Toa3 + y1a; + yoay (2 all a2 (:131) + | 1 a2 (yl)

~ N VAR VA

NA{M VCC‘Iﬂ hqu‘rL'aJ'l'h

= Ax + Ay = fa(x) + fa(y).
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(b) Let A € Rand x = (i;) € R% Then:

| | ATy (32)
fa(dx) = A(\x) = (ﬁlll a|2) (/\$2> (Ax1)a; + (Azg)ag

= Mwias + z289) 2 A (a:l a:z> (”“) = AMx = Ma(x). O
WXy
" k "
Aem“"*y 3t §Ar_f@f->m“‘ , d5:R—R | X€ R

K 4
Bef™ 7 £ ofyt K> (fue8s)f) = pot) - £,(8)
:ng\)ﬁ = A(8x) = (A8)-x = S5 (x)

LV "hac

“
If we have a linear map f : R™ — R™, we can write it as X€ lR"I X = [ )
hr‘i"’h"f - f(x) = f@er + - + zney) :{ilﬂel) + -+ anflen)
and immediately find: (‘_'_)' ()

| Remark: Linear maps induce matrices

h

For each linear mapf : R® — R™; there is exactly one imatriz A € R™*"> with
f = fa. In the columns of A, one finds the images of the canonical unit vectors:

T | | eR™ -
A= (f(rl) f(flen))CR ._f(g,-)em(:aﬁ)

A is often called the transformation matrix of f. /__\
! /|-/-\ %
516 = () - (1) - (300 o))

=X, J@A) R f(e,) + ot X, Jq‘h) = 5()‘) 7(;’ A reR

for ule
/‘Isrm-c. ) = {4 ¥ /g => ;A(y) = {B(,() = /4)( = Bx S L

fix) = f3 &) 5
frsr T s (A3)x= (3) 4 #x

=> Ah (alu..,,, o} A-B ac Ars =D A-‘B /

Holix — 2

- L‘lnlw hﬂf
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Rule of thumb: Linear map = lines stay lines |

A linear map f : R™ — R™ conserves the linear structure: If U C R" is @ linear

subspace then also the image f(U) C R™. Or in other words: Lines on the left stay
lines on the right:

>

(However, lines could shrink down to the origin.)

A linear map is completely determined when one knows how it acts on the canonical unit
vectors ey, . . ., e,. Therefore, in R?, a good visualisation is to look at “houses”: A house H

is given by two points. Now what happens under a linear map f4 associated to a matrix
A? One just have to look at the corners:

o := fa(o) :A(g) =0a; +0az =0 U
p/ = fA(p) = A((l)) = 18_1 + 0a2 = aj /
Q= fala) = A() = 0ar + 11 g
o P
€4
With the help of the linearity, we also know what happens with the other parts of the
house, for example the corners of the door: -
P \‘;y.;? , :f;q(r7' fﬁgp)*f,q(‘l)
S
S

A
Since t = %p and u = }lp, we have:

Fa(t) = fa@p) = La(p) = 1p/

fa(u) = fa(lp) & La(p) = Lp/

Example 3.15. A non-linear map

A map f:R? — R? given by ‘ |

o (x) N <x— L(cos(my) — 1))‘ —

Yy y + 3 sin(2mz)

18 not linear! |_| >




3.6 Linear maps

| Example 3.16. Some linear house transformations

15

@9 (8
.

J:(‘a) 3

o=(G 1) - (3(9) = (G

1 -1
1 I 0
S by -1
;J(L =

Q
Il

5.0 , _ (1 o0
<0 5) H' =5H ﬂl—(o 1) H =H

30
(31 (3 6 M:(
K—(1 2) L_(l 2) A
A
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3.7 Linear dependence, linear independence, basis and
dimension

We have seen that in R? two vectors can be parallel (colinear): /

There is a A € R with a = Ab. (// E’ ;/
Similarly, in R? three vectors can be in the same plane (coplanar) or not:

There are A\, u € R witha= Ab + puc.
If this is the case, we can build a loop of vectors, starting at o and ending at o again:

o= (—1)a+ Ab+ puc.

T

Now -'{n'w'ul l‘n‘ﬁl ‘o‘n‘fk J"Oh 5 ;

Let us generalise this:

Definition 3.17. Linear dependence and indepedence

A family (Vlr, ... yVk) of k wvectors from R™ is calleddinearly dependent if we find a
non-trivial linear combination for o. This means that we can find A\q,...,\, € R
that are not all equal zero such that

k
E )\jVj =0.
i=1

If this is not possible, we call the family (v1,...,vy) linearlyfiidependent. This
means that o

k
Z)\jVj:O = )\1,...7/\].320
j=1

holds.

Example 3.18. Let us look at examples:
(a) The family ((;), (7). (})) is linearly dependent since

(1)=0)-0)
> ( ( +(2) *(")()
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(b) ((1), (1), (3)) is linearly dependent.

B)=0(})ea () e

(c) Each family which includes o is linearly dependent. Also each family that has the
same vector twice or more is linearly dependent.

(G,0,0)) (2) =) 0(f) <2 (2)

(d)

1 0 0 3
e = 0 ey = 1 es=1 0 i,, ﬁ(
0 0 1
These are linearly independent vectors, because
_0_ 1 0 0 A1
O ]l=XM10]+X|1|+X][0]=]2
0 0 0 1 A3

yields /\1 = )\2 = )\3 =0.

If we add an arbitrary additional vector

ay (‘
a=| a |, A C )
- 3
3
l,l ", JW
we can combine it from the other three by setting A\; = a;, which means:

a = a1e; + azey + ases

So the resulting set of vectors is linearly dependent.

0= ae, +a e+ e, t(A)a

~, /|
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>

| Proposition 3.19. Linear dependence

For a family (vy,...,vg) of vectors from R™ the following claims are equivalent:

(i) (vi,...,Vg) is linearly dependent.

/o lluqv- J’h‘.‘)&t‘

(i) There is a vector in Span (v, ..., V) that has two or more representations as
a linear combination. —_—
(i1i) At least one of the vectors in (vy,...,Vg) is a linear combination of the others.

(i) There is ani € {1,...,k} such that we have Z onid v;

Span(vlv 50 o ,Vk) = Span(vl7 <oy Vi1, Vi, - - 7V/€) j

(v) There is ani € {1,...,k} with v; € Span(vy,..., Vi 1,Vii1,- -, Vg)-
You bae b prover @) DG () DED)
(.(t)___>(.“));ﬁ[54‘w_' =2 () = ‘—'—(—‘;D(w) =) ..o
() ‘—‘)(7\4\/44....42“\/,1: O .=> ﬂ,,:---:ﬂk::O)
= (Va, v L tdeged ok D 6V

((ir}) => (c'i.i. ) ) Ai:u.m ((:b) :> (W 24\/4 4o+ Ak Vi amd
7]
N = /‘/‘ Ve 4+ - -‘-/tht L." ;” %;:/A‘-

Proof. Exercise!

| Proposition 3.20. Linear independence >> (ﬂ"’/‘ 4) Vot -t bk '/'k) “=0
For a family (v1,...,vk) of vectors from R™ the following are equivalent: D Vise...
(i) (vi,...,vg) is linearly independent.
(i1) Every wvector in/ Span (vy,...,Vg) can be formed by linear combinations in

exactly one way.
(i1i) None of the vectors in (vq,...,vy) is a linear combination of the others.
() For alli € {1,...,k} we have:

Span(Vh 000 7Vk) 7£ Span(vl, <oy Vi1, Vi1, - 7Vk) :

(v) Forallie {1,...,k} we have v; & Span(vy, ..., Vi1, Viti, ..., Vg)-

/)
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A simple consequence is: )
Corollary 3.21.

If the family (v1,...,vy) is linearly dependent, we can subjoin vectors and the res-
ulting family is still linearly dependent. On the other hand, if the family (v1,. .., V)
is linearly independent, we cari omit vectors and the resulting family is still linearly
independent.

Z1 [K?
f

Let now V' be a subspacé”of R"™, which is spanned by the vectors vy, ..., V= R". Hence
V = Span(vy, ..., Vg).

Question: Efficiency question:

Howdmany vectors do we actually need to span V ¢

(— f

JV“.Q (v/ll VQIVJ:VQ )= /RI

——= =

f(‘,q‘ i_'\' ./u' -4‘1—-... !'\.'GAJ
~ T Shold uye te, ve chns

| Definition 3.22. Basis, basis vectors

Let 'V be a subspace of R™. A family B =(vy,...,Vg) is called a basis of V' if
———

(a) V = Span(B) and > ‘FA..), J:—-.q;}g_; H¢ .rn.‘r qce

(b) B is linearly independent.

The elements of B are called the basis vectors of V.

A (0{’ 0) fom'z:l'/a—; "?‘.‘ ﬂ)-:)/
T L., ind.

We can show that each subspace V' C R" has a basis. We define:

fK" : (64/ "';‘u)

‘l-' a " ~> (ﬁ-Ohfcc-[ L.n‘r
.ﬂ.r; K (s,‘““‘\rd “U\.")



