3.6 Linear maps

Each map that conserves the structure of our vector space \mathbb{R}^{n} is called a linear map. We already know that the only structure we have is the vector addition and the scalar multiplication.

Definition 3.13. Linearity of maps

A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$, we have:

$$
\begin{equation*}
\longrightarrow \text { Addition in } \mathbb{R}^{{ }^{n}(\mathbf{x}+\mathbf{y})}=f(\mathbf{x})+f(\mathbf{y}) \quad \text { Addition in } \mathbb{R}^{n} \tag{+}
\end{equation*}
$$

Rule of thumb:

Equation $(+)$ means: First adding, then mapping $=$ First mapping, then adding Equation (•) means: First scaling, then mapping $=$ First mapping, then scaling

We already know that for each matrix $A \in \mathbb{R}^{m \times n}$ there is an associated map f_{A}. This map is indeed a linear map.

Proposition 3.14. f_{A} is linear

$f_{A}(x)=A x$
Let $m, n \in \mathbb{N}, A \in \mathbb{R}_{\uparrow}^{m \times n} \uparrow$ and $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $\mathbf{x} \stackrel{f_{A}}{\mapsto} A \mathbf{x}$. Then the following holds:
(a) For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have

$$
f_{A}(\mathbf{x}+\mathbf{y})=f_{A}(\mathbf{x})+f_{A}(\mathbf{y})
$$

(b) For all $\lambda \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{n}$ one has

$$
f_{A}(\lambda \mathbf{x})=\lambda f_{A}(\mathbf{x}), \quad \text { ie. } \quad A(\lambda \mathbf{x})=\lambda A \mathbf{x}
$$

Proof. This follows immediately from the properties of the matrix product in Proposition 3.12. However, it may be helpful to write down a direct proof for the case $n=2$.
(a) Let $\mathbf{x}=\binom{x_{1}}{x_{2}}$ and $\mathbf{y}=\binom{y_{1}}{y_{2}}$ be vectors in \mathbb{R}^{2}. Then we have:

$$
\begin{aligned}
& f_{A}(\mathbf{x}+\mathbf{y})=A(\mathbf{x}+\mathbf{y})=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} \\
\mid & \mid
\end{array}\right)\binom{x_{1}+y_{1}}{x_{2}+y_{2}} \\
& \stackrel{(3.2)}{=}\left(x_{1}+y_{1}\right) \mathbf{a}_{1}+\left(x_{2}+y_{2}\right) \mathbf{a}_{2} \\
&=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+y_{1} \mathbf{a}_{1}+y_{2} \mathbf{a}_{2} \stackrel{(3.2)}{=}\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} \\
\mid & \mid
\end{array}\right)\binom{x_{1}}{x_{2}}+\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} \\
\mid & \mid
\end{array}\right)\binom{y_{1}}{y_{2}} \\
&=A \mathbf{x}+A \mathbf{y}=f_{A}(\mathbf{x})+f_{A}(\mathbf{y}) . \\
& \text { Matrix vector munultiplication }
\end{aligned}
$$

(b) Let $\lambda \in \mathbb{R}$ and $\mathbf{x}=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}$. Then:

$$
\begin{aligned}
& f_{A}(\lambda \mathbf{x})=A(\lambda \mathbf{x})=\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} \\
\mid & \mid
\end{array}\right)\binom{\lambda x_{1}}{\lambda x_{2}} \stackrel{(3.2)}{=}\left(\lambda x_{1}\right) \mathbf{a}_{1}+\left(\lambda x_{2}\right) \mathbf{a}_{2} \\
& =\lambda\left(x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}\right) \stackrel{(3.2)}{=} \lambda\left(\begin{array}{cc}
\mid & \mid \\
\mathbf{a}_{1} & \mathbf{a}_{2} \\
\mid & \mid
\end{array}\right)\binom{x_{1}}{x_{2}}=\lambda A \mathbf{x}=\lambda f_{A}(\mathbf{x}) \text {. } \\
& \left.A \in \mathbb{R}^{n \times k}\right\} \quad A B \in \mathbb{R}^{n \times 6} \quad f_{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}, f_{\mathcal{B}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \\
& f_{A}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}, \quad f_{\mathcal{B}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \quad, \times \in \mathbb{R}^{n} \\
& B \in \mathbb{R}^{k \times n} \quad f_{A} \circ f_{3}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}: \quad\left(f_{A} \circ f_{B}\right)(x)=f_{A}\left(f_{B}(x)\right)=f_{A}\left(\hat{B_{x}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { If we have a linear map } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text {, we can write it as } \\
& x \in \mathbb{R}^{n}, x=\binom{f_{1}}{x_{n}} \\
& \text { arbitrary } \xrightarrow{f(\mathbf{x})}=f\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right)=x_{1} f\left(\mathbf{e}_{1}\right)+\cdots+x_{n} f\left(\mathbf{e}_{n}\right) \\
& \text { and immediately find: }
\end{aligned}
$$

Remark: Linear maps induce matrices
For each linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, there is exactly one matrix $A \in \mathbb{R}^{m \times n}$ with $f=f_{A}$. In the columns of A, one finds the images of the canonical unit vectors:

$$
A:=\left(\underset{\mid}{\mid}\left(\mathbf{e}_{1}\right) \ldots f(\underset{\mid}{\mid}) \in \mathbb{R}^{m \times n} f\left(e_{i}\right) \in \mathbb{R}_{(3.6)}^{m}\right.
$$

A is often called the transformation matrix of f.

$$
\begin{aligned}
f_{A}(x) & =f_{A}\left(\binom{x_{1}}{\dot{x}_{n}}\right)=A \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
f\left(e_{n}\right) & \cdots \\
1 & f\left(e_{n}\right) \\
1
\end{array}\right)\left(\begin{array}{c}
\left(x_{n}\right. \\
\cdots \\
\otimes
\end{array}\right) \\
& =x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)+\cdots+x_{n} f\left(e_{n}\right)=f(x) \quad \text { for all } x \in \mathbb{R}^{n}
\end{aligned}
$$

Assunc: $f(x)=f_{A}(x)$
$\Rightarrow A l l$ colum e of $A-B$ ar Base $\Rightarrow A=B \backslash$

Rule of thumb: Linear map $=$ lines stay lines

A linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ conserves the linear structure: If $U \subset \mathbb{R}^{n}$ is a linear subspace then also the image $f(U) \subset \mathbb{R}^{m}$. Or in other words: Lines on the left stay lines on the right:

(However, lines could shrink down to the origin.)

A linear map is completely determined when one knows how it acts on the canonical unit vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$. Therefore, in \mathbb{R}^{2}, a good visualisation is to look at "houses": A house H is given by two points. Now what happens under a linear map f_{A} associated to a matrix A ? One just have to look at the corners:

$$
\begin{aligned}
\mathbf{o}^{\prime} & :=f_{A}(\mathbf{o})=A\binom{0}{0}=0 \mathbf{a}_{\mathbf{1}}+0 \mathbf{a}_{\mathbf{2}}=\mathbf{o} \\
\mathbf{p}^{\prime} & :=f_{A}(\mathbf{p})=A\binom{1}{0}=1 \mathbf{a}_{1}+0 \mathbf{a}_{2}=\mathbf{a}_{1} \\
\mathbf{q}^{\prime} & :=f_{A}(\mathbf{q})=A\binom{0}{1}=0 \mathbf{a}_{\mathbf{1}}+1 \mathbf{a}_{\mathbf{2}}=\mathbf{a}_{2}
\end{aligned}
$$

With the help of the linearity, we also know what happens with the other parts of the house, for example the corners of the door:

$$
\Gamma=p+q, \quad f_{A}(r)=\underset{s^{\prime}}{f_{A}(p)+f_{A}(y)}
$$

Since $\mathbf{t}=\frac{1}{2} \mathbf{p}$ and $\mathbf{u}=\frac{1}{4} \mathbf{p}$, we have:

$$
\begin{aligned}
& f_{A}(\mathbf{t})=f_{A}\left(\frac{1}{2} \mathbf{p}\right) \stackrel{(\cdot)}{=} \frac{1}{2} f_{A}(\mathbf{p})=\frac{1}{2} \mathbf{p}^{\prime} \\
& f_{A}(\mathbf{u})=f_{A}\left(\frac{1}{4} \mathbf{p}\right) \stackrel{(\cdot)}{=} \frac{1}{4} f_{A}(\mathbf{p})=\frac{1}{4} \mathbf{p}^{\prime}
\end{aligned}
$$

Example 3.15. A non-linear map
A map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f:\binom{x}{y} \mapsto\binom{x-\frac{1}{5}(\cos (\pi y)-1)}{y+\frac{1}{8} \sin (2 \pi x)} .
$$

is not linear!

Example 3.16. Some linear house transformations

3.7 Linear dependence, linear independence, basis and dimension

We have seen that in \mathbb{R}^{2} two vectors can be parallel (colinear):

$$
\text { There is a } \lambda \in \mathbb{R} \text { with } \mathbf{a}=\lambda \mathbf{b} \text {. }
$$

Similarly, in \mathbb{R}^{3} three vectors can be in the same plane (coplanar) or not:

$$
\text { There are } \lambda, \mu \in \mathbb{R} \text { with } \mathbf{a}=\lambda \mathbf{b}+\mu \mathbf{c} \text {. }
$$

If this is the case, we can build a loop of vectors, starting at \mathbf{o} and ending at \mathbf{o} again:

$$
\begin{gathered}
\mathbf{0}=(-1) \mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c} \\
\text { non-tivial } \quad \text { linear combination }
\end{gathered}
$$

Let us generalise this:

Definition 3.17. Linear dependence and indepedence

A family $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ of k vectors from \mathbb{R}^{n} is called linearly dependent if we find a non-trivial linear combination for $\mathbf{0}$. This means that we can find $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ that are not all equal zero such that

$$
\sum_{j=1}^{k} \lambda_{j} \mathbf{v}_{j}=\mathbf{o}
$$

If this is not possible, we call the family $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ linearly independent. This means that

$$
\sum_{j=1}^{k} \lambda_{j} \mathbf{v}_{j}=\mathbf{o} \Rightarrow \lambda_{1}, \ldots, \lambda_{k}=0
$$

holds.

Example 3.18. Let us look at examples:
(a) The family $\left(\binom{1}{0},\binom{1}{1},\binom{0}{1}\right)$ is linearly dependent since

$$
\begin{aligned}
\binom{1}{1} & =\binom{1}{0}+\binom{0}{1} \\
\longrightarrow\binom{0}{0} & =\binom{1}{0}+\binom{0}{1}+(-1)\binom{1}{1}
\end{aligned}
$$

(b) $\left(\binom{1}{0},\binom{1}{1},\binom{2}{2}\right)$ is linearly dependent.

$$
\binom{0}{0}=0 \cdot\binom{1}{0}+2 \cdot\binom{1}{1}+(-1)\binom{2}{2}
$$

(c) Each family which includes \mathbf{o} is linearly dependent. Also each family that has the same vector twice or more is linearly dependent.

$$
\left(\binom{0}{0},\binom{1}{1},\binom{0}{1}\right)\binom{0}{0}=2 \cdot\binom{0}{0}+0\binom{1}{1}+0\binom{0}{1}
$$

(d)

$$
\mathbf{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \mathbf{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \quad \text { in } \quad \mathbb{R}^{3}
$$

These are linearly independent vectors, because

$$
\binom{\frac{0}{0}}{\underline{0}}=\lambda_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\lambda_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\frac{\lambda_{1}}{\frac{\lambda_{2}}{\lambda_{3}}}\right)
$$

yields $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$.
If we add an arbitrary additional vector

$$
\begin{aligned}
& \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), \quad\left(a, e_{1}, e_{\mathbf{2}}, e_{\mathbf{3}}\right) \\
& \text { lin. deg.? }
\end{aligned}
$$

we can combine it from the other three by setting $\lambda_{i}=a_{i}$, which means:

$$
\mathbf{a}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+a_{3} \mathbf{e}_{3}
$$

So the resulting set of vectors is linearly dependent.

$$
0=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+(-1) a
$$

Proposition 3.19. Linear dependence
For a family $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ of vectors from \mathbb{R}^{n} the following claims are equivalent:
(i) $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is linearly dependent.
p linear subspace
(ii) There is a vector in $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ that has two or more representations as
a linear combination. a linear combination.
(iii) At least one of the vectors in $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is a linear combination of the others.
(iv) There is an $i \in\{1, \ldots, k\}$ such that we have

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{k}\right)
$$

(v) There is an $i \in\{1, \ldots, k\}$ with $\mathbf{v}_{i} \in \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{k}\right)$.

$$
\left((i i) \Rightarrow(i i i): \quad \begin{array}{c}
\text { Assume }
\end{array} \quad(i i) \Rightarrow \begin{array}{l}
\begin{array}{l}
h
\end{array}=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k} \quad \text { and } \\
\vdots=\mu_{1} v_{n}+\cdots+\mu_{k} v_{k} \text { net } \mu \lambda \lambda_{i}=\mu_{i}
\end{array}\right.
$$

$$
\begin{array}{ll}
\Rightarrow\left(\lambda_{n}-\mu_{1}\right) v_{1}+\cdots+\left(\lambda_{k}-\mu_{k}\right) v_{k}=0 \\
\text { ing are equivalent: } & \text { ड } v_{i}=\ldots .
\end{array}
$$

(i) $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is linearly independent.
(ii) Every vector in $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ can be formed by linear combinations in exactly one way.
(iii) None of the vectors in $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is a linear combination of the others.
(iv) For all $i \in\{1, \ldots, k\}$ we have:

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \neq \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{k}\right)
$$

(v) For all $i \in\{1, \ldots, k\}$ we have $\mathbf{v}_{i} \notin \operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{k}\right)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { You have ty prow }(i) \Rightarrow(i i),(i i) \Rightarrow(i i i) \ldots \\
(i) \Rightarrow(i)):[\text { Show: } 7(i i) \Rightarrow f(i)](i i i) \Rightarrow(i) \ldots \square
\end{array} \\
& \neg(i d) \Rightarrow\left(\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0\right) \\
& \Rightarrow\left(v_{n}, \ldots, v_{k}\right) \text { hi. indegondut } \Rightarrow \neg(i) \checkmark \\
& \text { Proof. Exercise! }
\end{aligned}
$$

3.7 Linear dependence, linear independence, basis and dimension

A simple consequence is:

Corollary $\mathbf{3 . 2 1}$.
If the family $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is linearly dependent, we can subjoin vectors and the resulting family is still linearly dependent. On the other hand, if the family $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is linearly independent, we can omit vectors and the resulting family is still linearly independent.

Let now V be a subspace of \mathbb{R}^{n}, which is spanned by the vectors $\mathbf{v}_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$. Hence $V=\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Question: Efficiency question:
How many vectors do we actually need to span V ?

plane is tur-Mannered
\rightarrow I shall use too vechs
Definition 3.22. Basis, basis vectors
Let V be a subspace of \mathbb{R}^{n}. A family $\mathcal{B}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is called a basis of V if (a) $V=\operatorname{Span}(\mathcal{B}) \xrightarrow{\text { and }}$ fancy generates the sind space
(b) \mathcal{B} is linearly independent.

The elements of \mathcal{B} are called the basis vectors of V.
A lot of paomik.4.

We can show that each subspace $V \subset \mathbb{R}^{n}$ has a basis. We define:

$$
\mathbb{R}^{n}: \underbrace{\left(e_{1}, \cdots, e_{n}\right)}_{\text {basis of }} \mathbb{R}^{n} \rightarrow \begin{array}{c}
\text { canonical basis } \\
\text { (standard basis) }
\end{array})
$$

