
3
Matrices and linear systems

Definition 3.1.
The set of all matrices with m rows and n columns is notated as:

Rm×n :=




A =




a11 . . . a1n
...

...
am1 . . . amn


 : aij ∈ R , i = 1, . . . ,m , j = 1, . . . , n





Definition 3.2. Matrix + Matrix = Matrix

Let A,B ∈ Rm×n. The addition A+B ∈ Rm×n is defined by



a11 · · · a1n
...

...
am1 · · · amn




� �� �
A

+




b11 · · · b1n
...

...
bm1 · · · bmn




� �� �
B

:=




a11 + b11 · · · a1n + b1n
...

...
am1 + bm1 · · · amn + bmn




� �� �
A+B

.

Example 3.3.

�
1 2
3 4

�
+

�
1 0
2 −1

�
=

�
1 + 1 2 + 0
3 + 2 4− 1

�
=

�
2 2
5 3

�
.

1
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Attention!
The addition A+B is only defined for matrices with the same height and the same
width.

Definition 3.4. Scalar · Matrix = Matrix

Let A ∈ Rm×n and λ ∈ R. Then the scalar multiplication λ·A ∈ Rm×n is defined
by:

λ·




a11 · · · a1n
...

...
am1 · · · amn




� �� �
A

:=




λa11 · · · λa1n
...

...
λam1 · · · λamn




� �� �
λ·A

.

Example 3.5.

2

�
1 2
3 4

�
=

�
2 · 1 2 · 2
2 · 3 2 · 4

�
=

�
2 4
6 8

�
=

�
1 2
3 4

�
+

�
1 2
3 4

�
.

3.1 Introduction to systems of linear equations

We start with some easy examples:

Xavier is two years older than Yasmin. x− y = 2
Together they are 40 years old. x+ y = 40

How old is Xavier and how old is Yasmin? x = ?, y = ?

This was an example with two unknowns (x and y). Here we give an example for three
unknowns. (x, y and z):

2x −3y +4z = −7
−3x +y −z = 0
20x +10y = 80

10y +25z = 90
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Here, the most important part is that the equations are linear. The exact definition will
follow later. The sloppy way to say that an equation is linear is:

constant · x1 + constant · x2 + · · · + constant · xn = constant . (3.1)

As you can see, there are a lot of constants that have to be numeric.

Definition 3.6. System of linear equations (LES)

Let m,n ∈ N be two natural numbers. A system of linear equations or a
linear equation system (abbreviation: LES) with m equations and n unknowns
x1, x2, ..., xn is given by:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm





(LES)

Here, aij and bi are given numbers, mostly just real numbers. A solution of the LES
is a choice of values for x1, ..., xn such that all m equations are satisfied.

Example 3.7. Having three unknowns x1, x2, x3, we could have different cases for the set
of solutions:

E1

E2

s
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2 equations �

or

3 equations �

Definition 3.8. LES in matrix notation

Let A ∈ Rm×n with entries aij ∈ R and b ∈ Rm with entries bi ∈ R. Then

Ax = b

represents (LES) from above, where x ∈ Rn.

The two examples from above in this notation:

�
1 −1
1 1

��
x

y

�
=

�
2

40

�
,




2 −3 4
−3 1 −1
20 10 0
0 10 25




�
x
y
z

�
=




−7
0
80
90


 .
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Definition 3.9. Matrix · Vector = Vector
Let m,n ∈ N and

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


 ∈ Rm×n and x =



x1...
xn


 ∈ Rn.

The product Ax = A · x (where we mostly do not use a dot) is given as the vector

Ax :=




a11x1 + a12x2 + · · ·+ a1nxn...
am1x1 + am2x2 + · · ·+ amnxn


 ∈ Rm.

Attention!
The width of A has to be the same as the height of x! Otherwise Ax is not defined.

3.2 Some words about matrices

For a matrix A ∈ Rm×n the number m is called the number of rows and n the number of
columns. The matrix A is a rectangle with height m and width n.

As special cases, we note:

• A ∈ Rn×n (i.e. m = n) is called a square matrix or quadratic matrix

• A ∈ Rm×1 is a column vector of size m

• A ∈ R1×n is a row vector of size n

• A ∈ R1×1 is a scalar, just a real number.
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3.3 Looking at the columns and the associated linear
map

One way to imagine a matrix in Rm×n is to see it as a collection of n columns of size m:

A =




a11 . . . a1n
...

...
am1 . . . amn


 =


a1 · · · an


 , where ai =




a1i
...

ami




Ax is a linear combination of the columns of A

Ax =


a1 · · · an






x1...
xn


 = x1


a1


+ · · ·+ xn


an


 (3.2)

x ∈ Rn

A·
This machine multiplies

each vector from Rn

with the matrix A.

Ax ∈ Rm

The function fA defined by the matrix A

fA : Rn → Rm, with fA : x �→ Ax (3.3)
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3.4 Looking at the rows

Above, we have considered a matrix A ∈ Rm×n as a collection of columns and defined a
linear map fA : Rn → Rm. However, we may also see A as a collection of m rows of size n:

A =




a11 . . . a1n
...

...
am1 . . . amn


 =




αT
1

· · ·
αT

m


 , where αT

i =
�
ai1 · · · ain

�

Here, we use the notation T for the transpose of a column vector. The result is a
row vector with the same entries. We fix this as a space:

R1×n = {xT =
�
x1 . . . xn

�
: x1, . . . , xn ∈ R}

Since a row vector uT ∈ R1×n is just a very flat matrix, the product with a column vector
v ∈ Rn is well-defined:

uTv = (u1v1 + · · ·+ unvn) ∈ R1×1.

Ax is the scalar product of x with the rows of A

Ax =




αT
1

. . .
αT

m





x


 =



αT

1 x...
αT

nx


 (3.4)

3.5 Matrix multiplication

Let A ∈ Rm×n.

A


b1 . . .bk


 =


Ab1 Ab2 · · · Abk


 for k column vectors b1, . . . ,bk .
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The result is a matrix with m rows and k columns and denoted by AB. It is called the
matrix product of A and B.

Definition 3.10. Matrix product

For matrices A ∈ Rm×n and B ∈ Rn×k, the matrix product is defined as

AB =




αT
1

. . .
αT

m





b1 . . .bk






αT

1 b1 · · · αT
1 bn

...
...

αT
mb1 · · · αT

1 bn


 ∈ Rm×k. (3.5)

Or in other words: AB is the m× k-matrix that has the following entries:

(AB)ij =
n�

r=1

airbrj

for i = 1, . . . ,m and j = 1, . . . , k.

Attention!
The product AB is only defined if the width of A coincides with the height of B.
The “inner dimensions” have to match.

Special cases:

• A = aT ∈ R1×n, B = b ∈ Rn×1: AB = aTb ∈ R

• A = a ∈ Rn×1, B = bT ∈ R1×m: AB = abT ∈ Rn×m, (AB)ij = aibj (called
rank 1 matrix)

Example 3.11. Just calculate some examples:

(a) We combine the following matrix dimensions (2× 2) · (2× 3) ⇒ 2× 3:

�
1 2
3 4

�

� �� �
A

�
1 2 3
4 5 6

�

� �� �
B

=

��
1 2
3 4

�

� �� �
A

�
1

4

�

����
b1

�
1 2
3 4

�

� �� �
A

�
2

5

�

����
b2

�
1 2
3 4

�

� �� �
A

�
3

6

�

����
b3

�
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=

�
1 · 1 + 2 · 4 1 · 2 + 2 · 5 1 · 3 + 2 · 6
3 · 1 + 4 · 4� �� �

Ab1

3 · 2 + 4 · 5� �� �
Ab2

3 · 3 + 4 · 6� �� �
Ab3

�
=

�
9 12 15
19 26 33

�

(b) Let A =

�
1 2 3
4 5 6

�
and B =

�
1 2
3 4

�
.

(c) Now the matrix dimensions (3× 1) · (1× 3) ⇒ 3× 3:�
1
2
3

�
(1 2 3) =

��
1
2
3

�
1����
b1

�
1
2
3

�
2����
b2

�
1
2
3

�
3����
b3

�
=



1 2 3
2 4 6
3 6 9




(d) Now the matrix dimensions (1× 3) · (3× 1) ⇒ 1× 1:

(1 2 3)

�
1
2
3

�
= (1 · 1 + 2 · 2 + 3 · 3) = (14) = 14

(e) A 2× 2-example:
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(Source of the picture: g33ktheory.com)

We can also ask what happens if we multiply a row vector xT from the left to a matrix
B. By definition, we get:

xTB =
�
x1 · · · xn

�



βT
1
...
βT

n


 = x1

�
βT

1

�
+ · · ·+ xn

�
βT

n

�
.

This means the product xTB is a linear combination of the rows of B. This is an analogy
that Ax is a linear combination of the columns of A, cf. equation (3.4).

Remark:
Now we can see the matrix product as introduced

AB =


Ab1 Ab2 · · · Abk




This means that each column of AB consists of a linear combination of the columns
from A.
Seeing the product with the other eye

AB =




αT
1
...

αT
m


B =




αT
1B
...

αT
mB


 ,

we see that each row of AB consists of a linear combination of the rows from B.

Now, we summarise the properties of the matrix multiplication.
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Proposition 3.12. Properties of the matrix product

(a) For all A,B ∈ Rm×n and C ∈ Rn×k and D ∈ R�×m we have:
(A+ B) · C = A · C + B · C und D · (A+ B) = D · A+D · B.

(b) For all A ∈ Rm×n and B ∈ Rn×k and λ ∈ R we have:
λ · (A · B) = (λ · A) · B = A · (λ · B).

(c) Associative rule: For all A ∈ Rm×n and B ∈ Rn×k and C ∈ Rk×� we have:
A · (B · C) = (A · B) · C.

Proof. All these rules follow from the definition of the matrix product of A and B,

(AB)ij =
n�

r=1

airbrj ,

and the fact that these rules hold for the real numbers air, brj ∈ R. For example, for
showing (c):

(A(BC))ij =
n�

r=1

air(BC)rj =
n�

r=1

air

n�

z=1

brzczj =
n�

z=1

�
n�

r=1

airbrz

�
czj = ((AB)C)ij .

Properties (a) and (b) are left as an exercise.

Attention! No commutative rule
In general, we have for two matrices:

AB �= BA (in general).

Remark:
We thus have the following interpretations of the matrix vector product AB:

• the columns of B are used to build linear combinations of the columns of A,

• the rows of A are used to build linear combinations of the rows of B,

• each row αT
i of A and each column bj of B are multiplied to form an entry

of the product: (AB)ij = αT
i bj,

• each column ai of A and each row βT
i of B is combined to a rank-1 matrix

aiβ
T
i , and the matrices are added up,

All these interpretations are equally valid, and from situation to situation, we can
change our point of view to gain additional insights.


