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Example 2.14. The vector space Rn is spanned by the n unit vectors:

e1 =




1
0
...
0
0


 , e2 =




0
1
...
0
0


 , . . . , en−1 =




0
0
...
1
0


 , en =




0
0
...
0
1




because v =
�n

i=1 viei for all v ∈ Rn. In short: Rn = Span(e1, . . . , en).

VL3
↓

Proposition 2.15. Span is smallest linear subspace

Let U ⊂ Rn be a linear subspace and M ⊂ U any set. Then Span (M) is a linear
subspace and Span(M) ⊂ U .

Definition 2.16. Addition for subspaces?

If U1 and U2 are linear subspaces in Rn, then one defines

U1 + U2 := Span (U1 ∪ U2).

Example 2.17. Let us look at some spans:

(a) Span(
�
3
1

�
) ⊂ R2 is the line that “the vector

�
3
1

�
spans” going trough the origin of R2.
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(b) Span(
�
1
0

�
,
�
0
1

�
) is the whole plane R2. Span(

�
1
0

�
,
�
1
1

�
) is also the whole plane.

(c) Span
��1

0
0

�
,

�
0
1
0

��
this is the xy-plane in R3.

(d) Span
��1

2
3

�
,

�
2
4
7

��
is a plane in R3 going through

�
0
0
0

�
,

�
1
2
3

�
and

�
2
4
7

�
.

(e) Span
��1

0
0

�
,

�
0
1
0

�
,

�
0
0
1

��
is the whole space R3. Span

��1
1
0

�
,

�
0
1
1

�
,

�
1
0
1

��
is also the

whole space
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(f) Span

�



1
2
3
4
5




�
is a “line” in R5, Span

�



1
2
3
4
5


 ,




5
4
3
2
1




�
is a “plane”.

Affine subspaces and convex subsets

Rule of thumb:
Affine subspaces correspond to arbitrary lines, planes,. . . . In other words: translated
linear subspaces.

If we do not want o to be part of our “generalised plane”, we have to replace linear
combinations by affine combinations:

v =
k�

j=1

λjuj where
k�

j=1

λj = 1.

Example 2.18. Consider the position vectors

a =

�−1

2

�
und b =

�
3

4

�

corresponding to the points A and B. Find the centre point of the line between A and B.
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x

y

a

b

0

A

B

M

x

y

a

b

0

A

B

M

P

The connection vector from A to B is then:

−a+ b = −
�−1

2

�
+

�
3

4

�
=

�
1

−2

�
+

�
3

4

�
=

�
1 + 3

−2 + 4

�
=

�
4

2

�
=: d

The center point is then given by going only half way in the direction of d:

m = a+
1

2
d =

�−1

2

�
+

1

2

�
4

2

�
=

�−1

2

�
+

�
2

1

�
=

�
1

3

�
(2.6)

The point M with position vector m =
�
1
3

�
is the wanted centre point. In general, we get

the formula:

m = a+ 1
2
d = a+ 1

2
(−a+ b) = a− 1

2
a+ 1

2
b = 1

2
a+ 1

2
b = 1

2
(a+ b)

Instead of using 1
2
, we can choose λ ∈ R to divide the line from A to B. We get:

q := a+ λ

d� �� �
(−a+ b) = (1− λ)a+ λb (2.7)

The corresponding point Q (with position vector q from the equation above) lies

at point A if λ = 0,

at point B if λ = 1,
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at the centre point M if λ = 1
2
,

between A and B if λ ∈ [0, 1] (2.8)
on the line through A and B for all λ ∈ R, (2.9)

on the line through A and B, “in front of” A for all λ < 0,

on the line through A and B, “behind” B for all λ > 1.

x

y

a

b

0

Q−1

Q0 = A

Q 1
2
= M

Q 1
4
= P

Q1 = B

Q2

This brings out to the following:

Definition 2.19. Affine Subspaces in Rn

A subset U ⊂ Rn is called an affine subspace of Rn if all affine combinations of
vectors in U remain also in U :

u1, . . . ,uk ∈ U , λ1, . . . ,λk ∈ R with
k�

j=1

λj = 1 =⇒
k�

j=1

λjuj ∈ U
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Definition 2.20. Convex subsets in Rn

A subset U ⊂ Rn is called a convex subset of Rn if all convex combinations of
vectors in U remain also in U :

u1, . . . ,uk ∈ U , λ1, . . . ,λk ∈ [0, 1] with
k�

j=1

λj = 1 =⇒
k�

j=1

λjuj ∈ U

The analogous formulation to the linear hull is the affine hull. Try to give a definition!

Proposition 2.21. Properties of affine subspaces

(i) Each linear subspace is an affine subspace.

(ii) If an affine subspace contains o, it is a linear subspace.

(iii) Given an affine subspace S ⊂ Rn and a vector v ∈ Rn, the translated set:

v + S := {x ∈ Rn : x = v + s for s ∈ S}

is also an affine subspace.

(iv) Every nonempty affine subspace S can be written in the form S = v + U for
some v ∈ S and U a linear subspace.

Proof. (i) : Follows from the definition because each affine combination is a linear com-
bination.

(ii) : If we have an arbitrary linear combination, we can trivially add also the zero vector.
But if the zero-vector is in a linear combination, we can make it an affine one.

(iii) : Let us write an arbitrary affine combination of elements of v + S:

k�

j=1

λj (sj + v)� �� �
∈v+S

=
k�

j=1

λjsj +
k�

j=1

λj

� �� �
1

v =
k�

j=1

λjsj + v

� �� �
∈v+S

.
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Proposition 2.22. Characterisation of affine subspaces

Let S ⊂ Rn, such that

a,b ∈ S , λ ∈ R =⇒ λa+ (1− λ)b ∈ S

Then S is already an affine subspace.

Proof. We do a proof by mathematical induction:

Induction hypothesis: affine combinations of k vectors remain in S. In other words:

v =
k�

j=1

λjaj and
k�

j=1

λj = 1 implies v ∈ S

for every k and every admissible choice of λj and aj ∈ S.

Base case: by assumption, this is certainly true for k = 2.

Induction step: k → k+1. Let aj and λj be given for all j ∈ {1, . . . , k+1}. By definition

λ1 + · · ·+ λk = 1− λk+1

thus we can write:

v =
k+1�

j=1

λjaj = (1− λk+1)

�
k�

j=1

λj

λ1 + · · ·+ λk

aj

�

� �� �
affine combination w

+λk+1ak+1

= (1− λk+1)w + λk+1uk+1 ∈ S

By our induction hypothesis, w ∈ U , because it is an affine combination of k vectors.
Thus, v ∈ U as well, because it is an affine combination of w and uk+1.

Conical combinations (an outlook)

There are also other rules for combining vectors. they lead to different classes of sets. For
example, conical combinations of vectors are defined as:

v =
k�

j=1

λjuj where λj ≥ 0.

The sets which contain all possible conical combinations of their elements are called convex
cones, and we can define the conical hull of a set of vectors.

We can summarise this in the following table:
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no sign imposed λj ≥ 0

no sum imposed linear conical
�

λj = 1 affine convex

For all these types of sets we know ”... combinations“, and ”... hulls“.

This illustrates our strategy: describe things known from R2 and R3 algebraically, and
thus generalise them to arbitrary dimensions.

2.5 Inner product and norm in Rn

We transfer the notion of the inner product to define orthogonality and the length of the
vector to the general Rn

Definition 2.23. Inner product: �Vector,Vector� = Number

For two vectors

u =



u1...
un


 , v =



v1...
vn


 ∈ Rn the number �u,v� := u1v1 + ...+ unvn =

n�

i=1

uivi

is called the (standard) inner product of u and v. Sometimes also called:
(standard) scalar product. If �u,v� = 0, then we call u and v orthogonal.

Proposition 2.24.

The standard inner product �·, ·� : Rn×Rn → R fulfils the following: For all vectors
x,x�,y ∈ Rn and λ ∈ R, one has

(S1) �x,x� > 0 for all x �= o, (positive definite)
(S2) �x+ x�,y� = �x,y�+�x�,y�, (additive)
(S3) �λx,y� = λ�x,y�, (homogeneous)

�
(linear)

(S4) �x,y� = �y,x�. (symmetric)
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Definition 2.25. Norm of a vector in Rn

For a vector

v =



v1...
vn


 ∈ Rn the number �v� :=

�
�v,v� =

�
v21 + ...+ v2n

is called the norm or length of v.

u ⊥ v ⇒ �u+ v�2 = �u�2 + �v�2.

For a linear subspace U ⊂ Rn we define the orthogonal complement:

U⊥ := {v ∈ Rn : �v,u� = 0 ∀u ∈ U} .

However, we come back to such constructions later.

2.6 A special product in R3(!): The vector product or
cross product

Definition 2.26. Cross product: Vector × Vector = Vector

The cross product or vector product of two vectors

u =

�
u1
u2
u3

�
, v =

�
v1
v2
v3

�
∈ R3 is given by u× v :=

�
u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

�
∈ R3.


