
2
Vectors in Rn

2.1 What are vectors?

In this section we do some informal discussions about the objects of linear algebra. We
will make all objects into rigorous definitions later.

With vectors or arrows, you can do two things:

• Add the two arrows, by concatenating them and call the result �v + �w.

• Scale an arrow by a (positive or negative) factor λ and call the result λ�v.
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�v

�w
�v + �w

�v

3�v

−1
2
�v

With these operations we can combine �v and �w to a large number of arrows and this is
what one calls a linear combination:

If we scale two vectors �v and �w and add them, we get a new vector:

λ�v + µ�w (linear combination)

Mostly, there is no confusion which variables are vectors and which one are just numbers
such that we will omit the arrow from now on. However, we will use bold letters in this
script to denote vectors most of the time.

2.2 Vectors in the plane

We already know that we can describe the two-dimensional plane by the cartesian product
R× R, which consists of all the pairs of real numbers. For each point in the plane, there
is an arrow where the tail sits at the origin. This is what one calls a position vector.

v =

�
3

2

�
x

y

v
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Now we also know how to add and scale these column vectors:

Define addition and scaling:

v +w =

�
v1 + w1

v2 + w2

�
λv =

�
λv1
λv2

�

Definition 2.1. Vector space R2

The set R2 = R×R is called the vector space R2 if we write the elements in column
form

v =

�
v1
v2

�
with v1, v2 ∈ R

and use the vector addition and scaling from above. The numbers v1 and v2 are
called the components of v.

For describing each point in the plane, the following elements are useful:

Definition 2.2. Zero vector and canonical unit vectors
The two vectors e1, e2 ∈ Rn are called canonical unit vectors and o is called the
zero vector:

o =

�
0
0

�
, e1 =

�
1
0

�
, e2 =

�
0
1

�
.

Note that we can write every vector v ∈ R2 as a linear combination of the two unit vectors:

v =

�
v1
v2

�
= v1e1 + v2e2

x

y

v

v1e1

v2e2
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Linear combinations

To compare apples and oranges: An apple has 8mg vitamin C and 4µg vit-
amin K. An orange has 85mg vitamin C and 0.5µg vitamin K:

Apple a =

�
8

4

�
VitC

VitK
, Orange b =

�
85

0.5

�
VitC

VitK

Fruit salad: How much vitamin C and vitamin K do I get if I eat 3 apples and 2
oranges? Answer:

3a+ 2b = 3

�
8

4

�
+ 2

�
85

0.5

�
=

�
3 · 8 + 2 · 85
3 · 4 + 2 · 0.5

�
=

�
194

13

�
VitC

VitK

Here, you can see a rough sketch of this vector addition:

VitC

VitK

b

a

3a + 2b

0

A vector written as
λa+ µb with λ, µ ∈ R (2.1)

is called a linear combination of a and b. We can expand this definition:

Definition 2.3. Linear combination

Let v1, . . . ,vk be vectors in R2 and λ1, . . . ,λk ∈ R scalars. Then

k�

j=1

λjvj = λ1v1 + · · ·+ λkvk

is called a linear combination of the vectors.
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Orthogonal vector and inner product

Question:

Which vectors v in R2 are perpendicular to the vector u =
�
2
1

�
?

Doing the sketch, one easily recognises that, for ex-
ample, v =

�−1
2

�
is perpendicular to u. Of course, all

multiples of this vector will also work. In general: x

y

· u
v

0

v ∈ R2 is perpendicular to u =

�
u1

u2

�
⇐⇒ v = λ

�−u2

u1

�
for a λ ∈ R (2.2)

Rule of thumb: orthogonal vector in R2

To find a vector that is orthogonal to
�
x
y

�
, exchange the x and y and write a minus

sign in front of one of the two.

Looking at (2.2), we can reformulate:

u =

�
u1

u2

�
and v =

�
v1
v2

�
are orthogonal ⇔

�
v1
v2

�
= λ

�−u2

u1

�
for a λ ∈ R

⇔ u1v1 = −u2v2

⇔ u1v1 + u2v2 = 0

Hence, this means that
�
u1

u2

�
and

�
v1
v2

�
are orthogonal if the calculation of u1v1+u2v2 gives

us 0. Therefore, the term u1v1 + u2v2 is used to define the so-called inner product or
scalar product.
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Definition 2.4. Inner product: �vector,vector� = number

For two vectors

u =

�
u1

u2

�
, v =

�
v1
v2

�
∈ R2 the number �u,v� := u1v1 + u2v2 =

2�

i=1

uivi

is called the (standard) inner product of u and v. Sometimes also called:
(standard) scalar product.

Definition 2.5. Orthogonality of two vectors in R2

Two vectors u and v in R2 are called orthogonal (or perpendicular) if �u,v� = 0
holds. We also denote this by u ⊥ v

By using Pythagoras’ theorem, we can calculate the length of the arrow in the coordinate
system.

Length of v =
�

v21 + v22

x

y

v

v1e1

v2e2

Obviously, we can also define it by using the inner product:

Definition 2.6. Norm of a vector in R2

For a vector

v =

�
v1
v2

�
∈ R2 the number �v� :=

�
�v,v� =

�
v21 + v22

is called the norm or length of v.
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Lines in R2

For describing points in the plane, we can use the position vectors and just use the vector
operations to define objects in the plane. One of the simplest objects is a line g inside
the plane:

First case: The origin lies on the line g.

x

y g

g = {v ∈ R2 : �n,v� = 0} = {
�
x
y

�
����

v

∈ R2 : αx+ βy� �� �
�n,v�

= 0}.
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Second case: General case.

x

y g

p

Lines in the plane R2 (Equation in normal form)

For each line g, one has the following representation:

g = {v ∈ R2 : �n,v − p� = 0} = {
�
x
y

�
∈ R2 : αx+ βy = δ}

with δ := αp1 + βp2 = �
�
α
β

�
,
�
p1
p2

�
� = �n,p�. If the origin lies on g, then δ = 0

(choose p = o).

n

·

n

·

n

·

g
p

v

v − p

0

P

V
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2.3 The vector space Rn

λ ∈ R, v =



v1...
vn


 ⇒ λv = λ



v1...
vn


 :=



λv1...
λvn




u =



u1...
un


 , v =



v1...
vn


 ⇒ u+ v =



u1...
un


+



v1...
vn


 :=



u1 + v1...
un + vn




Definition 2.7. Vector space Rn

The set Rn = R× · · · × R is called the vector space Rn if we write the elements in
column form

v =



v1...
vn


 with v1, . . . , vn ∈ R

and use the vector addition and scaling from above. The number vi are called the
ith component of v.

Proposition 2.8. Properties of the vector space Rn

The set V = Rn with the addition + and scalar multiplication · fulfils the following:

(1) ∀v,w ∈ V : v +w = w + v (+ is commutative)
(2) ∀u,v,w ∈ V : u+ (v +w) = (u+ v) +w (+ is associative)
(3) There is a zero vector o ∈ V with the property: ∀v ∈ V gilt: v + o = v.
(4) For all v ∈ V there is a vector −v ∈ V with v + (−v) = o.
(5) For the number 1 ∈ R and each v ∈ V , one has: 1 · v = v.
(6) ∀α, β ∈ R ∀v ∈ V : λ · (µ · v) = (λµ) · v (· is associative)
(7) ∀λ ∈ R ∀v,w ∈ V : λ · (v +w) = (λ · v) + (λ ·w) (distributive ·+)
(8) ∀λ, µ ∈ R ∀v ∈ V : (λ+ µ) · v = (λ · v) + (µ · v) (distributive +·)

Each set V with an addition and scalar multiplication that satisfies the eight rules above
is called a vector space. We will come back to this in an abstract sense later. First we
will use this notion to talk about vector spaces inside Rn.
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Definition 2.9. Zero vector and canonical unit vectors
For i = 1, . . . , n, we denote the ith canonical unit vector by ei ∈ Rn and the
zero vector by o ∈ Rn, which means:

o =




0
0
...
0
0


 , e1 =




1
0
...
0
0


 , e2 =




0
1
...
0
0


 , . . . , en−1 =




0
0
...
1
0


 , en =




0
0
...
0
1




2.4 Linear and affine subspaces (and the like)

Linear subspaces

Rule of thumb:
Linear subspaces correspond to lines, planes,. . . through the origin.

Definition 2.10. Subspaces in Rn

A (nonempty) subset U ⊂ Rn is called a (linear) subspace of Rn if all linear com-
binations of vectors in U remain also in U :

u1, . . . ,uk ∈ U , λ1, . . . ,λk ∈ R =⇒
k�

j=1

λjuj ∈ U .
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Each linear subspace U of the vector space Rn is also a vector space in the sense of
the properties given in Proposition 2.8.

Linear combinations remain in U (by definition), and rules are inherited from V .

Proposition 2.11. Characterisation for subspaces

Let U ⊂ Rn, such that

u,v ∈ U , λ, µ ∈ R =⇒ λu+ µv ∈ U . (2.3)

Then U is already a linear subspace.

Proof. We do the proof by induction for k vectors like in the definition of a subspace:

Induction hypothesis (IH): Linear combinations of k vectors remain in U .

Base case (BC): For k = 2. This is exactly given by equation (2.3).

Induction step (IS): k → k + 1. Let u1, . . . ,uk+1 ∈ U and λ1, . . . ,λk+1 be given. We can
write:

v :=
k+1�

j=1

λjuj =

�
k�

j=1

λjuj

�

� �� �
=:w

+λk+1uk+1

= w + λk+1uk+1 ∈ U

By our induction hypothesis, w ∈ U because it is a linear combination of k vectors. Thus,
v ∈ U as well because it is a linear combination of w and uk+1, see (2.3).
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Rule of thumb: Subspace

A set U is a subspace if, by applying the operations + and λ· on elements of U , one
cannot escape the set U .

Linear hull or span

If we take a set of vectors M ⊂ Rn, we can create a linear subspace by building all possible
linear combinations:

Definition 2.12. Span

Let M ⊂ Rn be any non-empty subset. Then we define:

Span (M) :=

�
u ∈ Rn : ∃λj ∈ R,uj ∈ M such that u =

k�

j=1

λjuj

�
.

This subspace is called the span or the linear hull of M . For convenience, we define
Span(∅) := {o}.

Rule of thumb: All linear combinations form the span

Every vector in Span (M) can be written (possibly in several ways) as a linear com-
bination of elements of M . Vice versa, every linear combination of M is contained
in Span (M).

Example 2.13. The vector space Rn is spanned by the n unit vectors:

e1 =




1
0
...
0
0


 , e2 =




0
1
...
0
0


 , . . . , en−1 =




0
0
...
1
0


 , en =




0
0
...
0
1




because v =
�n

i=1 viei for all v ∈ Rn. In short: Rn = Span(e1, . . . , en).


