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(¢c) X3 :={la—"0|:a,be{1,2,3}}

(d) Xq:={1,..,20}\{neN:Ja,be Nwith2 <a and2 <b and n = a - b}.

(e) X5 :={S:S C{1,2,3}}.
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1.2 Real Numbers
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a+(b+c)=(a+0b)+c, a(bc) = (ab)c associative law

a+b=0b+a ab = ba commutative law

Some laws apply:
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a(b+ ¢) =ab+ac distributive law
Furthermore, we are used to have the neutral numbers @ and 1 with special properties:
a+0=a a-1l=a

and additive inverse element(—a and also the multiplicative inverseja™! = 1/a for a # 0.
They fulfila + (—a)e=0 and aa ' = 1.

A set with such properties is called a field. Here we have the field of real numbers R.

e|l 0 4 +1e 4
E-i‘:l\"_"__‘ @ f“(”‘ / Z—-L= {0/’{3 o|lQ 0 o\o 1
}tcu o 1110

Q‘L"&hj-‘ <

e For any a € R exactly one of the three relations hold

a<0,ora>0o0ra=0

e For all a,b € R with @ > 0 and b > 0 one has a + 0> 0 and ab > 0. @%)

Then, as a definition we write:
a<b & a—-0<0

and
a<b & a—-b<OQora=©b.

qf.;: T x>0, tha -X<0. (A’>B)
fosf: Mssawe x>0 ad -xz20. (An3)(7(A0))

'fi‘,f,“if‘ -X=0 - 0; X+(-x)= X = Xk=0 @(tdnl.wh)

7ah case: -X>0: 0 5\;’;*(‘)() (k;) 0 :> 0>a ﬁ KC’JAAQ‘”)

= (A>38) 0

For describing subsets of the real numbers, we will use intervals. Let a,b € R. Then we
define

/q[ b ={reR:a<z<b} T_:’ q—_é' .

(a,b] :={z €R:a <z <b} O: 3a
[a,b) :={z € R: a <z <b} [ﬂj 5-}
(a,b) :=={xr € R: a <z < b}.
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Obviously, in the case a > b, all the sets above are empty. We also can define unbounded
intervals:

0o s J«.rl A :s,u.M
(s tof «@ r(J botnin bo

{r eR:a <z}, (a,00) :={r €eR:a < x}
{z e R: z <b}, (—00,b) :={z e R: x < b}.

[a,00) :

(—o0,b] :

I |
| ! ‘
a O X -a

_I Definition 1.27. Absolute value for real numbers |

The absolute value of a numberx € R is defined by

yx\;:{ v Yz \X‘E_(:O,(!o)

—x  ifx <.

Question 1.28. Which of the following claims are true?

| —3.14] =314, [3|=3, |-il=11 4=2=2 0] is not well-defined.

| Proposition 1.29. Two important properties

For any two real numbers x,y € R, one has
(a) |z -yl =z|-|y|, (-] is multiplicative),

(b) |x+y| <l|z|+yl, (| fulfils the triangle inequality).

Togf: Do b fr wun'
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(%) Supplementary details: Real numbers

The real numbers are a non-empty set R together with the operations + : R x R — R and
-: R xR — R and an ordering relation <: R x R — {True, False} that fulfil the following rules
(A) Addition
(A1) associative: z+ (y+2)=(x+y)+ 2
(A2) neutral element: There is a (unique) element 0 with « 4+ 0 = z for all .

(A3) inverse element: For all = there is a (unique) y with z +y = 0. We write for this
element simply —zx.

(A4) commutative: z+y=y+ =z

(M) Multiplication
| (M1) associative: - (y-2) = (z-y) -z
(M2) neutral element: There is a (unique) element 1£0 with z-1 = z for all x.
(M3) inverse element: For all 2 # 0 there is a (unique) y with x - y = 1. We write for this

element simply z 1.

(M4) commutative: -y =y
(D) Distributivity: - (y+2)=z-y+z- 2.
(O) Ordering
(O1) for given x,y exactly one of the following three assertions is true: = <y, y < z, z = y.
(02) transitive: z < y and y < z imply z < z.
(03) z <y implies z + z < y + z for all z. > ﬂ-..ly
\‘ (04)
(

05) = >0 and £ > 0 implies z < € + - - - + ¢ for sufficiently many summands.

x <y implies z - z < y - z for all z > 0.

(C) Completeness: Eve'rys\cquoncc (an)nen with the property [For alle > 0 there is an N € N
with |a, — am| < € for all n,m > N| has a limit.

(*) Supplementary details: Definition: field

Every set M together with two the operations + : M x M — M and - : M x M — M that fulfil
(A), (M) and (D) is called a field. Z
=

-

Sums and products

We will use the following notations.

n(/
a; =@ay +as+---+anp_1+ay

UAi:AlLJAgU---UAn_luAn

=1

The union works also for an arbitrary index set Z:

JAi={a: 3ieTwithae A},

€L

"b')

Qe

®
00
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The first is a useful notation for a sum which is the result of an addition. Two or more
summands added. Instead of using points, we use the Greek letter ) . For example,

3+7+ 15+t 127

is not an unambiguous way to describe the sum. Using the sum symbol, there is no
confusion:

Of course, the parentheses are necessary here. You can read this as a for loop:

forﬂlo'op/for the sum above

sum := 0;
for i:=2 to(7 do {
sum := sum(+((2'-1);

by

Rule of thumb: Let i run from 2 to 7, calculate 2’ — 1 and add.

index variable: 4= 2, first summand: 20 —1=22—-1= 4—-1= 3
index variable: i =3, @®econd summand: 2! —1=23—-1= 8—-1= 7
mdex variable: 1 =4, third summand: 2'—1=2*—-1= 16—-1= 15
index variable: i =05, fourth summand: 2" —1=2>—-1= 32—-1= 31
index variable: i =6, fifth summand: 20 —1=26-1= 64—-1= 63
imdex variable: =17, last summand: 20 —1=2"—-1= 128 —1= 127

Sum: 246

Example 1.30.

10

S (2i-1)=1+3+5+...+19 =100

i=1

10
Y i=-10-9-8—...—1+0+1+-- +8+9+100 ,
1=—10

With the same construction, we describe the result of a multiplication, called a product,
which consists of two or more factors. There we use the Greek letter [[. For example:

ﬁ@i):(2'1)'(2'2)-(2-3)-...-(2-8);10321920.

=1
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Rational versus real numbers

For most practical purposes the rational numbers (all fractions)
Q:{m:m:gwi’chnGZ, dEN}
are enough. All numbers that can somehow be stored sensibly on a computer are rational.
C“' ¢ ’l" l“.l he “"\“’ Cai ‘C "’WN)‘M.J‘J é) a POJ-",“‘/

th.lur.

)l,‘ Jl'a
\ Jriem r
ke - T, e g

NI = |Q|< R
[\ o ~

— \J \7 ~

Mathematicians say: R is complete, Q is dense in R, R is the completion of Q.

We come back to this in the lecture Mathematical Analysis.

1.3 Maps

Definition 1.31. Function or map

Let X,Y bemon-empty sets. A rule that assigns to each argument x € X a unique
value y € Y is called a map or function from X into Y. One writes for this y

usually f(x).
Notation:
f: X—=>Y
z— f(z)

Here/ X is calleddomain of f, and Y is called codomain.

Attention! Two arrows! |

2

We use the arrow “ — 7 only between the sets, domain and codomain, and “+» 7
only between the elements.

Y /’\ (6Mfl' : i(x,;f(x]) :xe)(z

> X
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Example 1.32. (a) f:N —'Nwith f(z) = 2? maps each natural number to its square.
X =N Y =N

1 2 3
o] o5 oG 7 8
9 <10 -11 -12
13 14 <15
a6 - -
25

(b) Rx R

14

. T2
‘—\-—:\_‘\ f.R —R
R ¥a+¥q (z1,22) = 27 + 3

\/
O\

20

Well-definedness

What can go wrong with the definition of a map? Sometimes, when defining a function, it
is not completely clear, if this makes sense. Then one has to work and make this function
well-defined.
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Example: the square-root

Try to define a map a — /a in a mathematically rigorous way.
Naive definition:
VA R—TR

a — the solution of 22 = a.

Problem of well-definedness: As we all know, the above equation has two (a > 0), one
(a=0), or zeroa < 0) solutions.

First way: restrict the domain of definition and the codomain
i ) -
Rif={aeR:a>0} = Eo,oo)
Then:

\/_:RH%RS'

a — the non-negative solution of #? = a.

This yields the classical square-root.

Image and preimage
For every well defined map f: X — Y and A C X, B C Y we are interested in the
following sets:

_I Definition 1.33. !
Let f: X =Y be a function and A C X and B CY some sets.

f
flA):={f(z):xz € A}
1s called the image of A under f. G)H@
AL

fYB):={reX: f(x) € B}
is called the-preimage of B under f. @H[o

l‘ll" inverse %ﬂblhl'h
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| Definition 1.34. Range and fiber
Let f: X =Y be a map.

f(X) :@f)/:\: {f(z):x € A} is called the range of f.

For each y € Y the set:

7 ({y}) = {z € X : f(z) =y} is called a fiber of f.

Injectivity, surjectivity, bijectivity, inverse

| Definition 1.35. Injective, surjective and bijective

A map f: X =Y is called

e injective if every fiber of f has only one element: xy # xzj:‘(xl) # f(x2).
o surjective if Ran(f) = Y. With quantifiers: Yy € Y13z € X & f(z)=w:

e bijective if f is both injective and surjective.

Example 1.36. Define the function that maps each student to her or his chair. This
means that X is the set of all students in the room, and Y the set of all chairs in the
room.
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Rule of thumb: Surjective, injective, bijective

Amap f: X =Y is

surjective < at eachy € Y arrives at least one arrow
& f(X)=Y
& the equation f(x) =y has for ally € Y a solution

injective < at each y € Y arrives at most one arrow

& (v = flo)# f(z2)
& (fle) = flz2) = x1 =19
& the equation f(x) =1y has for ally € f(X) a unique solution

bijective < at each y € Y arrives exactly one arrow

& the equation f(x) =y has for ally € Y a unique solution

Thus, if f is bijective, there is a well defined inverse map

1y =X X
y — x where f(z) =y.
Then f is called invertible and f~! is called the inverse map of f. ke

Example 1.37. Consider the function f : N — {1,4,9,16,...} given by f(n) =mn?. This
is a bijective function. The inverse map f~! is given by:

f1:{1,4,9,16,25,...} = N
m— v/m

or: 71,2 —=n
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Example 1.38. For a function f: R — R, we can sketch the graph {(z, f(x)) : z € X}
in the z-y-plane:

Y
fR—=R

Y x— 2 —1

fR—=R

T35 +1

1 T

xr

Y fR—=R

l T sinx

\ x
Which of the functions are injective, surjective or bijective?

Composition of maps

_I Definition 1.39. |
If f: X =Y and g:Y — Z, we may compose, or concatenate these maps:

gof:X =7
z = g(f(z))

We call g o f the composition of the two functions.
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Usually, go f # f o g, the latter does not even make sense, in general.

X—>Y—>Z7

gof

Example 1.40. (a) f:R—> R, z— 2% ¢g:R— R, 2+ sin(x)

gof:R—R
x> sin(z?)
fog:R—=R

x> (sin(r))?

(b) Let X be a set. Then idy : X — X with z — z is called the identity map. If there
is no confusion, one usually writes id instead of idx. Let f : X — X be a function.
Then

foid=f=ido f.

1.4 Natural numbers and induction

The natural numbers are N = {1,2,3...}.

e Question 1: When are two sets S, T of the same size? Have the same cardinality
|S| = |T'|? Answer: They have the same size if there is a bijective map S — 7.



