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(c) X3 := {|a− b| : a, b ∈ {1, 2, 3}}

(d) X4 := {1, ..., 20} \ {n ∈ N : ∃a, b ∈ N with 2 ≤ a and 2 ≤ b and n = a · b}.

(e) X5 := {S : S ⊂ {1, 2, 3}}.

VL1
↓

1.2 Real Numbers

Some laws apply:

a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c associative law
a+ b = b+ a ab = ba commutative law
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a(b+ c) = ab+ ac distributive law

Furthermore, we are used to have the neutral numbers 0 and 1 with special properties:

a+ 0 = a a · 1 = a

and additive inverse element −a and also the multiplicative inverse a−1 = 1/a for a �= 0.
They fulfil a+ (−a) = 0 and aa−1 = 1.

A set with such properties is called a field. Here we have the field of real numbers R.

• For any a ∈ R exactly one of the three relations hold

a < 0, or a > 0 or a = 0

• For all a, b ∈ R with a > 0 and b > 0 one has a+ b > 0 and ab > 0.

Then, as a definition we write:

a < b :⇔ a− b < 0

and
a ≤ b :⇔ a− b < 0 or a = b .

For describing subsets of the real numbers, we will use intervals. Let a, b ∈ R. Then we
define

[a, b] := {x ∈ R : a ≤ x ≤ b}
(a, b] := {x ∈ R : a < x ≤ b}
[a, b) := {x ∈ R : a ≤ x < b}
(a, b) := {x ∈ R : a < x < b}.
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Obviously, in the case a > b, all the sets above are empty. We also can define unbounded
intervals:

[a,∞) := {x ∈ R : a ≤ x}, (a,∞) := {x ∈ R : a < x}
(−∞, b] := {x ∈ R : x ≤ b}, (−∞, b) := {x ∈ R : x < b}.

Definition 1.27. Absolute value for real numbers
The absolute value of a number x ∈ R is defined by

|x| :=
�

x if x ≥ 0,

−x if x < 0.

Question 1.28. Which of the following claims are true?

|− 3.14| = 3.14, |3| = 3, |− 7
5
| = 7

5
, −|− 3

5
| = 3

5
, |0| is not well-defined.

Proposition 1.29. Two important properties

For any two real numbers x, y ∈ R, one has

(a) |x · y| = |x| · |y|, (|·| is multiplicative),

(b) |x+ y| ≤ |x|+ |y|, (|·| fulfils the triangle inequality).
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(∗) Supplementary details: Real numbers

The real numbers are a non-empty set R together with the operations + : R × R → R and
· : R× R → R and an ordering relation <: R× R → {True,False} that fulfil the following rules

(A) Addition
(A1) associative: x+ (y + z) = (x+ y) + z

(A2) neutral element: There is a (unique) element 0 with x+ 0 = x for all x.
(A3) inverse element: For all x there is a (unique) y with x + y = 0. We write for this

element simply −x.
(A4) commutative: x+ y = y + x

(M) Multiplication
(M1) associative: x · (y · z) = (x · y) · z
(M2) neutral element: There is a (unique) element 1 �=0 with x·1 = x for all x.
(M3) inverse element: For all x �= 0 there is a (unique) y with x · y = 1. We write for this

element simply x−1.
(M4) commutative: x · y = y · x

(D) Distributivity: x · (y + z) = x · y + x · z.
(O) Ordering

(O1) for given x, y exactly one of the following three assertions is true: x < y, y < x, x = y.
(O2) transitive: x < y and y < z imply x < z.
(O3) x < y implies x+ z < y + z for all z.
(O4) x < y implies x · z < y · z for all z > 0.
(O5) x > 0 and ε > 0 implies x < ε+ · · ·+ ε for sufficiently many summands.

(C) Completeness: Every sequence (an)n∈N with the property [For all ε > 0 there is an N ∈ N
with |an − am| < ε for all n,m > N ] has a limit.

(∗) Supplementary details: Definition: field

Every set M together with two the operations + : M ×M → M and · : M ×M → M that fulfil
(A), (M) and (D) is called a field.

Sums and products

We will use the following notations.

n�

i=1

ai = a1 + a2 + · · ·+ an−1 + an

n�

i=1

ai = a1 · a2 · · · · · an−1 · an
n�

i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An−1 ∪ An

The union works also for an arbitrary index set I:
�

i∈I
Ai = {x : ∃i ∈ I with x ∈ Ai} .
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The first is a useful notation for a sum which is the result of an addition. Two or more
summands added. Instead of using points, we use the Greek letter

�
. For example,

3 + 7 + 15 + . . .+ 127

is not an unambiguous way to describe the sum. Using the sum symbol, there is no
confusion:

7�

i=2

(2i − 1).

Of course, the parentheses are necessary here. You can read this as a for loop:

for loop for the sum above

sum := 0;
for i:=2 to 7 do {

sum := sum + (2i-1);
}

Rule of thumb: Let i run from 2 to 7, calculate 2i − 1 and add.

index variable: i = 2, first summand: 2i − 1 = 22 − 1 = 4− 1 = 3
index variable: i = 3, second summand: 2i − 1 = 23 − 1 = 8− 1 = 7
index variable: i = 4, third summand: 2i − 1 = 24 − 1 = 16− 1 = 15
index variable: i = 5, fourth summand: 2i − 1 = 25 − 1 = 32− 1 = 31
index variable: i = 6, fifth summand: 2i − 1 = 26 − 1 = 64− 1 = 63
index variable: i = 7, last summand: 2i − 1 = 27 − 1 = 128− 1 = 127

Sum: 246

Example 1.30.
10�

i=1

(2i− 1) = 1 + 3 + 5 + . . .+ 19
?
= 100

10�

i=−10

i = −10− 9− 8− . . .− 1 + 0 + 1 + · · ·+ 8 + 9 + 10
?
= 0

With the same construction, we describe the result of a multiplication, called a product,
which consists of two or more factors. There we use the Greek letter

�
. For example:

8�

i=1

(2i) = (2 · 1) · (2 · 2) · (2 · 3) · . . . · (2 · 8) ?
= 10321920.
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Rational versus real numbers

For most practical purposes the rational numbers (all fractions)

Q =
�
x : x =

n

d
with n ∈ Z, d ∈ N

�

are enough. All numbers that can somehow be stored sensibly on a computer are rational.

Mathematicians say: R is complete, Q is dense in R, R is the completion of Q.

We come back to this in the lecture Mathematical Analysis.

1.3 Maps

Definition 1.31. Function or map

Let X, Y be non-empty sets. A rule that assigns to each argument x ∈ X a unique
value y ∈ Y is called a map or function from X into Y . One writes for this y
usually f(x).

Notation:
f : X → Y

x �→ f(x)

Here, X is called domain of f , and Y is called codomain.

Attention! Two arrows!
We use the arrow “ → ” only between the sets, domain and codomain, and “ �→ ”
only between the elements.
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Example 1.32. (a) f : N → N with f(x) = x2 maps each natural number to its square.

1

2

3

4

5
. . .

1 2 3
4 5 6 7 8
9 10 11 12
13 14 15

. . .16

. . .
25

f

X = N Y = N

(b)

f : R2 → R
(x1, x2) �→ x2

1 + x2
2

(c)

f : Z× N → Q

(q, p) �→ q

p

Well-definedness

What can go wrong with the definition of a map? Sometimes, when defining a function, it
is not completely clear, if this makes sense. Then one has to work and make this function
well-defined.
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Example: the square-root

Try to define a map a → √
a in a mathematically rigorous way.

Naive definition:

√
: R → R
a �→ the solution of x2 = a.

Problem of well-definedness: As we all know, the above equation has two (a > 0), one
(a = 0), or zero (a < 0) solutions.

First way : restrict the domain of definition and the codomain

R+
0 = {a ∈ R : a ≥ 0}

Then:

√
: R+

0 → R+
0

a �→ the non-negative solution of x2 = a.

This yields the classical square-root.

Image and preimage

For every well defined map f : X → Y and A ⊂ X, B ⊂ Y we are interested in the
following sets:

Definition 1.33.
Let f : X → Y be a function and A ⊂ X and B ⊂ Y some sets.

f(A) := {f(x) : x ∈ A}
is called the image of A under f .

fX Y

A f(A)

f−1(B) := {x ∈ X : f(x) ∈ B}
is called the preimage of B under f .

fX Y

f−1(B) B
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Definition 1.34. Range and fiber

Let f : X → Y be a map.

f(X) := Ran(f) := {f(x) : x ∈ A} is called the range of f.

For each y ∈ Y the set:

f−1({y}) := {x ∈ X : f(x) = y} is called a fiber of f.

Injectivity, surjectivity, bijectivity, inverse

Definition 1.35. Injective, surjective and bijective

A map f : X → Y is called

• injective if every fiber of f has only one element: x1 �= x2 ⇒ f(x1) �= f(x2).

• surjective if Ran(f) = Y . With quantifiers: ∀y ∈ Y ∃x ∈ X : f(x) = y.

• bijective if f is both injective and surjective.

Example 1.36. Define the function that maps each student to her or his chair. This
means that X is the set of all students in the room, and Y the set of all chairs in the
room.
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not
injective

not
surjective

X Y

Rule of thumb: Surjective, injective, bijective

A map f : X → Y is

surjective ⇔ at each y ∈ Y arrives at least one arrow
⇔ f(X) = Y

⇔ the equation f(x) = y has for all y ∈ Y a solution

injective ⇔ at each y ∈ Y arrives at most one arrow
⇔ (x1 �= x2 ⇒ f(x1) �= f(x2))

⇔ (f(x1) = f(x2) ⇒ x1 = x2)

⇔ the equation f(x) = y has for all y ∈ f(X) a unique solution

bijective ⇔ at each y ∈ Y arrives exactly one arrow
⇔ the equation f(x) = y has for all y ∈ Y a unique solution

Thus, if f is bijective, there is a well defined inverse map

f−1 : Y → X

y �→ x where f(x) = y .

Then f is called invertible and f−1 is called the inverse map of f .

Example 1.37. Consider the function f : N → {1, 4, 9, 16, . . .} given by f(n) = n2. This
is a bijective function. The inverse map f−1 is given by:

f−1 : {1, 4, 9, 16, 25, . . . } → N
m �→ √

m

or: n2 �→ n
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1
4

9
16

25
. . .

1
2

3

4
5

. . .

f(N) N

Example 1.38. For a function f : R → R, we can sketch the graph {(x, f(x)) : x ∈ X}
in the x-y-plane:

x

y

f : R → R
x �→ x

2 + 1

x

y
f : R → R

x �→ x2 − 1

x

y f : R → R
x �→ sinx

Which of the functions are injective, surjective or bijective?

Composition of maps

Definition 1.39.
If f : X → Y and g : Y → Z, we may compose, or concatenate these maps:

g ◦ f : X → Z

x �→ g(f(x))

We call g ◦ f the composition of the two functions.
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Usually, g ◦ f �= f ◦ g, the latter does not even make sense, in general.

X → Y → Z

x
y

z
f

X Y
g

Z

g ◦ f

Example 1.40. (a) f : R → R, x �→ x2; g : R → R, x �→ sin(x)

g ◦ f : R → R
x �→ sin(x2)

f ◦ g : R → R
x �→ (sin(x))2

(b) Let X be a set. Then idX : X → X with x �→ x is called the identity map. If there
is no confusion, one usually writes id instead of idX . Let f : X → X be a function.
Then

f ◦ id = f = id ◦ f.

1.4 Natural numbers and induction

The natural numbers are N = {1, 2, 3 . . .}.

• Question 1: When are two sets S, T of the same size? Have the same cardinality
|S| = |T |? Answer: They have the same size if there is a bijective map S → T .


