(c)
$$X_3 := \{ |a - b| : a, b \in \{1, 2, 3\} \}$$

(d)
$$X_4 := \{1, ..., 20\} \setminus \{n \in \mathbb{N} : \exists a, b \in \mathbb{N} \text{ with } 2 \le a \text{ and } 2 \le b \text{ and } n = a \cdot b\}.$$

(e)
$$X_5 := \{S \colon S \subset \{1, 2, 3\}\}.$$

1.2 Real Numbers

Read number:
$$R$$
 (set)
 $addikan in R + (-> subblue)$
 $uulliplication in R + (-> subblue)$
 $uulliplication in R \cdot (-> durinon)$
 $uulliplication in R \cdot (-> durinon)$

$$a + (b + c) = (a + b) + c,$$
 $a(bc) = (ab)c$
 $a + b = b + a$ $ab = ba$

associative law commutative law

0 °

 $\begin{array}{c}
 \Lambda + \Lambda = \Lambda \\
 a \in \mathcal{X} \\
 \rightarrow \Lambda \cdot (\Lambda + \Lambda) = \Lambda + \Lambda
 \end{array}$

a(b+c) = ab + ac

distributive law

Furthermore, we are used to have the neutral numbers 0 and 1 with special properties:

$$a + 0 = a$$
 $a \cdot 1 = a$

and additive inverse element -a and also the multiplicative inverse $a^{-1} = 1/a$ for $a \neq 0$. They fulfil a + (-a) = 0 and $aa^{-1} = 1$.

A set with such properties is called a *field*. Here we have the field of real numbers \mathbb{R} .

Q fild, Z= 20,13

$$a < 0$$
, or $a > 0$ or $a = 0$

• For all $a, b \in \mathbb{R}$ with a > 0 and b > 0 one has a + b > 0 and ab > 0. Then, as a definition we write:

$$a < b$$
 : \Rightarrow $a - b < 0$

and

$$a \le b$$
 : \Leftrightarrow $a - b < 0$ or $a = b$

If X>0, then -X<0. (A->B) Proof: Assume x > 0 and $-x \ge 0$. $(A \land \neg B) \iff (\neg (A \rightarrow B))$ $\frac{1}{1} \int_{1}^{1} \int_{1}^$ Π For describing subsets of the real numbers, we will use <u>intervals</u>. Let $a, b \in \mathbb{R}$. Then we

define

$$\begin{array}{l} [a,b] := \{x \in \mathbb{R} : a \le x \le b\} \\ (a,b] := \{x \in \mathbb{R} : a < x \le b\} \\ [a,b) := \{x \in \mathbb{R} : a \le x < b\} \\ (a,b) := \{x \in \mathbb{R} : a < x < b\}. \end{array}$$

Obviously, in the case a > b, all the sets above are empty. We also can define unbounded intervals:

Question 1.28. Which of the following claims are true?

|-3.14| = 3.14, |3| = 3, $|-\frac{7}{5}| = \frac{7}{5}$, $|-\frac{3}{5}| = \frac{3}{5}$, |0| is not well-defined.

Proposition 1.29. Two important properties	
For any two real numbers $x, y \in \mathbb{R}$, one has	
(a) $ x \cdot y = x \cdot y $, (· is multiplicative),	
(b) $ x+y \leq x + y $, (· fulfils the triangle inequali	ty).

Proof: Do it for own!

(*) Supplementary details: Definition: field

Every set M together with two the operations $+: M \times M \to M$ and $\cdot: M \times M \to M$ that fulfil (A), (M) and (D) is called a <u>field</u>.

Sums and products

We will use the following notations.

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_{n-1} + a_n$$
$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdot \dots \cdot a_{n-1} \cdot a_n$$
$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_{n-1} \cup A_n$$

The union works also for an arbitrary index set \mathcal{I} :

$$\bigcup_{i\in\mathcal{I}}A_i = \left\{x : \exists i\in\mathcal{I} \text{ with } x\in A_i\right\}.$$

The first is a useful notation for a <u>sum</u> which is the result of an addition. Two or more <u>summands</u> added. Instead of using points, we use the Greek letter \sum . For example,

$$3 + 7 + 15 + \ldots + 127$$

is not an unambiguous way to describe the sum. Using the sum symbol, there is no confusion:

Of course, the parentheses are necessary here. You can read this as a for loop:

for loop for the sum above
 sum := 0;
 for i:=2 to 7 do {
 sum := sum + (2ⁱ-1);
 }

Rule of thumb: Let *i* run from 2 to 7, calculate $2^i - 1$ and add.

index variable:	i = 2,	first summand:	$2^i - 1 = 2^2 - 1 =$	4 - 1 =	3
index variable:	i = 3,	second summand:	$2^i - 1 = 2^3 - 1 =$	8 - 1 =	7
index variable:	i = 4,	third summand:	$2^i - 1 = 2^4 - 1 =$	16 - 1 =	15
index variable:	i = 5,	fourth summand:	$2^i - 1 = 2^5 - 1 =$	32 - 1 =	31
index variable:	i = 6,	fifth summand:	$2^i - 1 = 2^6 - 1 =$	64 - 1 =	63
index variable:	i = 7,	last summand:	$2^i - 1 = 2^7 - 1 =$	128 - 1 =	127
		Sum:			246

Example 1.30.

With the same construction, we describe the result of a multiplication, called a <u>product</u>, which consists of two or more <u>factors</u>. There we use the Greek letter \prod . For example:

$$\prod_{i=1}^{8} (2i) = (2 \cdot 1) \cdot (2 \cdot 2) \cdot (2 \cdot 3) \cdot \ldots \cdot (2 \cdot 8) \stackrel{?}{=} 10321920.$$

Rational versus real numbers

For most practical purposes the rational numbers (all fractions)

$$\mathbb{Q} = \left\{ x : x = \frac{n}{d} \text{ with } n \in \mathbb{Z}, d \in \mathbb{N} \right\}$$

are enough. All numbers that can somehow be stored sensibly on a computer are rational.

Mathematicians say: \mathbb{R} is complete, \mathbb{Q} is dense in \mathbb{R} , \mathbb{R} is the completion of \mathbb{Q} . We come back to this in the lecture Mathematical Analysis.

1.3 Maps

Example 1.32. (a) $f: \mathbb{N} \to \mathbb{N}$ with $f(x) = x^2$ maps each natural number to its square.

Well-definedness

What can go wrong with the definition of a map? Sometimes, when defining a function, it is not completely clear, if this makes sense. Then one has to work and make this function well-defined.

Example: the square-root

Try to define a map $a \to \sqrt{a}$ in a mathematically rigorous way. Naive definition:

$$\sqrt{} : \mathbb{R} \to \mathbb{R}$$
$$a \mapsto \text{ the solution of } x^2 = a.$$

Problem of well-definedness: As we all know, the above equation has $\underline{\text{two}}(a > 0)$, one (a = 0), or zero (a < 0) solutions.

First way: restrict the domain of definition and the codomain

$$\mathbb{R}_0^+ = \{a \in \mathbb{R} : a \ge 0\} = [0, \infty)$$

Then:

$$\sqrt{} : \mathbb{R}_0^+ \to \mathbb{R}_0^+$$
$$a \mapsto \text{ the non-negative solution of } x^2 = a.$$

This yields the classical square-root.

Image and preimage

For every well defined map $f : X \to Y$ and $A \subset X$, $B \subset Y$ we are interested in the following sets:

Example 1.36. Define the function that maps each student to her or his chair. This means that X is the set of all students in the room, and Y the set of all chairs in the room.

Rule of thumb: Surjective, injective, bijective $A \ map \ f: X \to Y \ is$ $surjective \Leftrightarrow at \ each \ y \in Y \ arrives \ at \ least \ one \ arrow$ $\Leftrightarrow \ f(X) = Y$ $\Leftrightarrow \ the \ equation \ f(x) = y \ has \ for \ all \ y \in Y \ a \ solution$ $injective \Leftrightarrow at \ each \ y \in Y \ arrives \ at \ most \ one \ arrow$ $\Leftrightarrow \ (x_1 \neq x_2 \ \Rightarrow \ f(x_1) \neq f(x_2))$ $\Leftrightarrow \ (f(x_1) = f(x_2) \ \Rightarrow \ x_1 = x_2)$ $\Leftrightarrow \ the \ equation \ f(x) = y \ has \ for \ all \ y \in f(X) \ a \ unique \ solution$ $bijective \ \Leftrightarrow \ at \ each \ y \in Y \ arrives \ exactly \ one \ arrow$ $\Leftrightarrow \ the \ equation \ f(x) = y \ has \ for \ all \ y \in Y \ a \ unique \ solution$

Thus, if f is bijective, there is a well defined inverse map

$$f^{-1}: Y \to X$$
$$y \mapsto x \text{ where } f(x) = y.$$

Then f is called <u>invertible</u> and f^{-1} is called the <u>inverse map of f</u>.

Example 1.37. Consider the function $f : \mathbb{N} \to \{1, 4, 9, 16, \ldots\}$ given by $f(n) = n^2$. This is a bijective function. The inverse map f^{-1} is given by:

$$f^{-1}: \{1, 4, 9, 16, 25, \dots\} \to \mathbb{N}$$
$$m \mapsto \sqrt{m}$$
or: $n^2 \mapsto n$

Example 1.38. For a function $f : \mathbb{R} \to \mathbb{R}$, we can sketch the graph $\{(x, f(x)) : x \in X\}$ in the *x-y*-plane:

Which of the functions are injective, surjective or bijective?

Composition of maps

Definition 1.39. If $f: X \to Y$ and $g: Y \to Z$, we may compose, or concatenate these maps: $g \circ f: X \to Z$ $x \mapsto g(f(x))$ We call $g \circ f$ the composition of the two functions. Usually, $g \circ f \neq f \circ g$, the latter does not even make sense, in general.

Example 1.40. (a) $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2; g : \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x)$

$$g \circ f : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sin(x^2)$$
$$f \circ g : \mathbb{R} \to \mathbb{R}$$
$$x \mapsto (\sin(x))^2$$

(b) Let X be a set. Then $id_X : X \to X$ with $x \mapsto x$ is called the *identity map*. If there is no confusion, one usually writes id instead of id_X . Let $f : X \to X$ be a function. Then

$$f \circ id = f = id \circ f.$$

1.4 Natural numbers and induction

The natural numbers are $\mathbb{N} = \{1, 2, 3...\}$.

• Question 1: When are two sets S, T of the same size? Have the same cardinality |S| = |T|? Answer: They have the same size if there is a bijective map $S \to T$.