Foundations of mathematics

1.1 Logic and sets

Definition 1.1. logical statement, proposition

A logical statement (or proposition) is a statement, which means a meaningful declarative sentence, that is either true or false.

- no opinions, - no guestions, no alternative fact - 40 Self-contrudictory statuents

Example 1.2. Which of these are logical statements?

(a) Hamburg is a city. Yes, it is free. (b) 1 + 1 = 2. Yes, it is true (c) The number 5 is smaller than the number 2. Yes, it is false (d) Good morning! (e) x + 1 = 1. No! It will get one, if X gets a value. (f) Today is Tuesday. No! (predicate) (predicate) (e) x + 1 = 1.

Logical operations

In the following, we will consider two logical statements A and B.

Definition 1.3. Negation $\neg A$ ("not A")

 $\neg A$ is true if and only if A is false.

Example 1.4. What are the negations of the following logical statements?(a) The wine bottle is full. = /

7 A = The vine bottle is <u>not</u> Jull. \neg It is not the same as : The vine bottle is empty. (b) The number 5 is smaller than the number 2. A = 5 < 27 A = 5 is greater or equal to 2. 7 A = $5 \ge 2$ (c) All students are in the lecture hall. = A 7 A = Not all shakeds are in the lecture hall. = There is a shaket that is hot in the lecture hall.

$A \wedge B$ is true if and only if both A and B are true.	Definition 1.5. Conjunction $A \wedge B$ ("A and B")
	$A \wedge B$ is true if and only if both A and B are true.

Truth table

 $\begin{array}{c|c|c}
A & B & A \land B \\
\hline
T & T & T \\
\hline
T & F & F \\
\hline
F & T & F \\
\hline
F & F & F \\
\hline
\end{array}$ (1.2)

Definition 1.6. Disjunction $A \lor B$ ("A or B")

 $A \lor B$ is true if and only if at least one of A or B is true.

Truth table
$$\begin{array}{c|c} A & B & A \lor B \\ \hline T & T & T \\ \hline T & F & T \\ F & T & T \\ F & F & F \end{array}$$
(1.3)

Definition 1.7. Conditional $A \rightarrow$	B ("If A then B ")	
$A \to B$ is only false if A is true but B	3 is false.	
Truth table	$\begin{array}{c c c} A & B & A \rightarrow B \\ \hline T & T & T \\ T & F & F \\ \hline F & T & T \\ F & F & T \\ \hline F & F & T \\ \end{array}$	(1.4)

Definition 1.8. Biconditional $A \leftrightarrow B$ ("A if and only if B") $A \leftrightarrow B$ is true if and only if $A \rightarrow B$ and $B \rightarrow A$ is true.

Truth table
$$\begin{array}{c|c}
A & B & A \leftrightarrow B \\
\hline T & T & T \\
\hline T & F & F \\
\hline F & T & F \\
\hline F & F & T \\
\hline F & F & T \\
\hline \end{array}$$
(1.5)

If a conditional or biconditional is true, we have a short notation for this that is used throughout the whole field of mathematics:

This means that we speak of *equivalence* of A and B if the truth values in the truth table

are exactly the same. For example, we have

$$A \leftrightarrow B \Leftrightarrow (A \to B) \land (B \to A).$$

Now one can ask: What to do with truth-tables?

Therefore:

is the most by contransition.

This is the proof by contraposition:

Contraposition
If $A \Rightarrow B$, then also $\neg B \Rightarrow \neg A$.
Rule of thumb: Contraposition
To get the contraposition $A \Rightarrow B$, you should exchange A and B and set a \neg -sign in front of both: $\neg B \Rightarrow \neg A$. It is clear: The contraposition of the contraposition is again $A \Rightarrow B$.
If there is $5 \circ g$, we have poor visibility. $A \rightarrow B$
If there is no poor visibility, then there is no fog $\neg B \longrightarrow \neg A$

The contraposition is an example of a <u>deduction rule</u>, which basically tells us how to get new true proposition from other true propositions. The most important deduction rules are given just by using the implication.

Modus ponensIf $A \Rightarrow B$ and A is true, then also B is true.

