SoSe 2019
Hamburg, 16.09.2019

University of Technology
Hamburg
Institute of Mathematics

Dr. J. Großmann
Dipl. Phys. J. Meichsner

Final Exam for Linear Algebra

Problem 1:

a) State your surename, forename, Matrikelnummer, subject and semester at the front cover. Also give your signature. Check if all 8 problems actually are in your exam.
b) What is the dimension of the kernel for the following matrix $A \in \mathbb{R}^{4 \times 4}$?

$$
A=\left(\begin{array}{llll}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{llllllllll}
\operatorname{dim}(\operatorname{Ker}(A)) & = & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Solution. That is clear!

Problem 2:

The following four vectors in \mathbb{R}^{3} are given.

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}
4 \\
-2 \\
-2
\end{array}\right), \mathbf{v}_{4}=\left(\begin{array}{l}
4 \\
2 \\
2
\end{array}\right) .
$$

a) Calculate the three-dimensional volume $\operatorname{Vol}_{3}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$.
b) Is the family $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$ linearly dependent? Justify your answer.
c) Determine a basis and the dimension of $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$.

Solution. (a)

$$
\operatorname{Vol}_{3}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}
0 & 2 & 4 \\
2 & 1 & -2 \\
-1 & -2 & -2
\end{array}\right)=: V
$$

(1 point)

For example, expanding along the first column:

$$
V=-2 \operatorname{det}\left(\begin{array}{cc}
2 & 4 \\
-2 & -2
\end{array}\right)+(-1) \operatorname{det}\left(\begin{array}{cc}
2 & 4 \\
1 & -2
\end{array}\right)
$$

And then use the determinant formula for 2×2-matrices.

$$
V=-8+8=0
$$

(1 point)
(b) The family is linearly dependent because $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$ span a volume of zero. (Alternatively: Four vectors in \mathbb{R}^{3} are always linearly dependent.) (1 point)
(c) We can calculate $\operatorname{Vol}_{3}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right)$ analogously to before and get

$$
\operatorname{Vol}_{3}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right)=-2 \operatorname{det}\left(\begin{array}{cc}
2 & 4 \\
-2 & 2
\end{array}\right)+(-1) \operatorname{det}\left(\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right)=(-2) \cdot 12+0 \neq 0 .
$$

This tells us that $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right)$ are linearly independent. Combining this with (b), we get that ($\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}$) form a basis of $\operatorname{Span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$ and the dimension is 3 . (2 points)

Problem 3:

Let

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & -2 \\
0 & 0 & 2
\end{array}\right) \in \mathbb{R}^{3 \times 3}
$$

a) Determine the characteristic polynomial of A and calculate the eigenvalues of A. State also the algebraic multiplicities.
b) For each eigenvalue, determine a basis for the corresponding eigenspace. State also the geometric multiplicities.
c) Why is A diagonalisable? Find an invertible matrix $X \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $X^{-1} A X=D$.
d) Calculate $A^{2} X$.

Solution. (a) Calculate:

$$
\operatorname{det}(A-\lambda \mathbb{1})=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 2 & 1 \\
0 & -1-\lambda & -2 \\
0 & 0 & 2-\lambda
\end{array}\right)=(1-\lambda)(-1-\lambda)(2-\lambda)
$$

The eigenvalues are $\lambda_{1}=-1, \lambda_{2}=1, \lambda_{3}=2$, where the algebraic multiplicity is one for all three. (1 point) (b)

$$
\begin{aligned}
& \operatorname{Ker}\left(A-\lambda_{1} \mathbb{1}\right)=\operatorname{Ker}\left(\begin{array}{ccc}
2 & 2 & 1 \\
0 & 0 & -2 \\
0 & 0 & 3
\end{array}\right) \stackrel{\binom{I I \cdot(-2)}{I I I-3 \cdot I I}}{=} \operatorname{Ker}\left(\begin{array}{lll}
2 & 2 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Span}\left(\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)\right) \\
& \operatorname{Ker}\left(A-\lambda_{2} \mathbb{1}\right)=\operatorname{Ker}\left(\begin{array}{lll}
0 & 2 & 1 \\
0 & -2 & -2 \\
0 & 0 & 1
\end{array}\right) \stackrel{\left(\frac{I I+I}{\left(I I+I I^{\prime}\right)}=\right.}{=} \operatorname{Ker}\left(\begin{array}{lll}
0 & 2 & 1 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Span}\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right) \\
& \operatorname{Ker}\left(A-\lambda_{3} \mathbb{1}\right)=\operatorname{Ker}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
0 & -3 & -2 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Span}\left(\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right)\right)
\end{aligned}
$$

The basis is always given in the span and the geometric multiplicity is one for all eigenvalues. (2 points)
(c) Because the geometric multiplicities coincide with algebraic multiplicities, A is diagonalisable. (1 point).

The wanted matrices in $X^{-1} A X=D$ are:

$$
X=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 2 \\
0 & 0 & -3
\end{array}\right), \quad D=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \text { (1 point) }
$$

(d) Because $A^{2} X=A(A X)=A(X D)=(A X) D=X D^{2}$, we just have to calculate D^{2} :

$$
D^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) \Rightarrow X D^{2}=\left(\begin{array}{ccc}
1 & 1 & 4 \\
-1 & 0 & 8 \\
0 & 0 & -12
\end{array}\right)
$$

(1 point)

Problem 4:

Decide if the following claims are true or false and mark it with a cross. (Marking both true and false will not get you a point. You do not get minus points for wrong answers.)

	false	true
If $A \in \mathbb{R}^{n \times n}$ is an invertible matrix, then A^{T} is not an invertible matrix.	X	
If \mathbf{v} is an eigenvector for the matrix A, then it is also an eigenvector for $A+2 A$.		X
For all matrices $A \in \mathbb{R}^{m \times n}$, one has $\operatorname{Ran}\left(A^{T} A\right)=\mathbb{R}^{n}$.	X	X
A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\operatorname{Ker}(A)=\{\mathbf{0}\}$.		X
The matrix $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \in \mathbb{R}^{2 \times 2}$ is invertible.	X	
All matrices $A \in \mathbb{R}^{m \times k}$ satisfy dim $(\operatorname{Ran}(A))+\operatorname{dim}(\operatorname{Ker}(A))=k$.	X	
Each matrix $A \in \mathbb{C}^{n \times n}$ has at least one eigenvalue.	X	
For an inner product $\langle\cdot, \cdot\rangle$ in \mathbb{R}^{3}, the set $\left\{\mathrm{x} \in \mathbb{R}^{3}:\langle\mathbf{x}, \mathbf{o}\rangle=0\right\}$ is a linear subspace.	X	
Each matrix $A \in \mathbb{C}^{n \times n}$ is similar to a diagonal matrix.	X	

Solution. See above.

Let V be an \mathbb{F}-vector space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Moreover, let $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be an orthonormal basis of V.
a) Let $\mathbf{x}, \mathbf{y} \in V$ be given as $\mathbf{x}=3 \mathbf{b}_{1}+\mathbf{b}_{4}-2 \mathbf{b}_{8}-2 \mathbf{b}_{9}+\mathbf{b}_{10}$ and $\mathbf{y}=2 \mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{5}-3 \mathbf{b}_{7}-\mathbf{b}_{9}$. Calculate $\langle\mathbf{x}, \mathbf{y}\rangle$.
b) Calculate the orthogonal projection of \mathbf{x} onto $\operatorname{Span}(\mathbf{y})$.

Solution. (a) In general for all \mathbf{x} and \mathbf{y} with

$$
\begin{aligned}
& \mathbf{x}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{n} \mathbf{b}_{n} \\
& \mathbf{y}=\beta_{1} \mathbf{b}_{1}+\cdots+\beta_{n} \mathbf{b}_{n},
\end{aligned}
$$

we get

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\left(\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{n} \mathbf{b}_{n}\right), \mathbf{y}\right\rangle=\sum_{j=1}^{n} \alpha_{j}\left\langle\mathbf{b}_{j}, \mathbf{y}\right\rangle=\sum_{j=1}^{n} \alpha_{j} \overline{\beta_{j}} .
$$

Hence $\langle\mathbf{x}, \mathbf{y}\rangle=3 \cdot 2+(-2)(-1)=8$. (2 points)
(b) First step is normalisation of \mathbf{y} :

$$
\hat{\mathbf{y}}:=\frac{1}{\|\mathbf{y}\|} \mathbf{y}=\frac{1}{\sqrt{16}} \mathbf{y}
$$

(1 point)
Then, we calculate

$$
\langle\mathbf{x}, \hat{\mathbf{y}}\rangle \hat{\mathbf{y}}=\langle\mathbf{x}, \mathbf{y}\rangle \frac{1}{\|\mathbf{y}\|^{2}} \mathbf{y}=\frac{8}{16} \mathbf{y}=\frac{1}{2} \mathbf{y}
$$

(1 point)
And then:

$$
\left.\mathbf{x}\right|_{\operatorname{Span}(\mathbf{y})}=\frac{1}{2} \mathbf{y}=\mathbf{b}_{1}+\frac{1}{2} \mathbf{b}_{2}+\frac{1}{2} \mathbf{b}_{5}-\frac{3}{2} \mathbf{b}_{7}-\frac{1}{2} \mathbf{b}_{9}
$$

(1 point)

Problem 6:

Let $\mathcal{P}_{2}(\mathbb{R})$ be the vector space of real polynomials with degree at most 2 . For $k \in \mathbb{N}_{0}$, we denote the monomials by $\mathbf{m}_{k}: \mathbb{R} \rightarrow \mathbb{R}$, which means $\mathbf{m}_{k}(x):=x^{k}$ for all $x \in \mathbb{R}$. Let $\ell: \mathbb{R}^{3} \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be a linear map given by

$$
\ell\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right):=\left(x_{1}+x_{2}+x_{3}\right) \mathbf{m}_{1}+\left(x_{1}-x_{2}-2 x_{3}\right) \mathbf{m}_{0}
$$

a) Determine the matrix representation of ℓ with respect to the following bases

$$
\mathcal{B}=\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right), \quad \mathcal{C}=\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{m}_{2}\right)
$$

b) We introduce two new bases

$$
\mathcal{B}^{\prime}=\left(\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right), \quad \mathcal{C}^{\prime}=\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{m}_{2}-\mathbf{m}_{1}\right) .
$$

Calculate the change of basis matrices $T_{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}$ and $T_{\mathcal{C} \leftarrow \mathcal{C}^{\prime}}$.
c) Calculate the matrix representation $\ell_{\mathcal{C}^{\prime} \leftarrow \mathcal{B}^{\prime}}$ by using part a) and b).

Solution. (a) We first calculate:

$$
\begin{aligned}
& \ell\left(\mathbf{b}_{1}\right)=1 \mathbf{m}_{1}+1 \mathbf{m}_{0}=1 \mathbf{m}_{0}+1 \mathbf{m}_{1}+0 \mathbf{m}_{3} \\
& \ell\left(\mathbf{b}_{2}\right)=1 \mathbf{m}_{1}+(-1) \mathbf{m}_{0}=-1 \mathbf{m}_{0}+1 \mathbf{m}_{1}+0 \mathbf{m}_{3} \\
& \ell\left(\mathbf{b}_{3}\right)=1 \mathbf{m}_{1}+(-2) \mathbf{m}_{0}=-2 \mathbf{m}_{0}+1 \mathbf{m}_{1}+0 \mathbf{m}_{3}
\end{aligned}
$$

The matrix representation $\ell_{\mathcal{C} \leftarrow \mathcal{B}}$ is then:

$$
\ell_{\mathcal{C} \leftarrow \mathcal{B}}=\left(\begin{array}{ccc}
1 & -1 & -2 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

(2 points)
(b) The change of basis matrices are immediately given:

$$
T_{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 2 & 1 \\
0 & 1 & 0
\end{array}\right), \quad T_{\mathcal{C} \leftarrow \mathcal{C}^{\prime}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

(1 point)
(c) Using the formula

$$
\ell_{\mathcal{C}^{\prime} \leftarrow \mathcal{B}^{\prime}}=T_{\mathcal{C}^{\prime} \leftarrow \mathcal{C}} \ell_{\mathcal{C} \leftarrow \mathcal{B}} T_{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}
$$

Since $T_{\mathcal{C}^{\prime} \leftarrow \mathcal{C}}=\left(T_{\mathcal{C} \leftarrow \mathcal{C}^{\prime}}\right)^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, we get:

$$
\ell_{\mathcal{C}^{\prime} \leftarrow \mathcal{B}^{\prime}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & -2 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 2 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & -4 & -1 \\
2 & 3 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

(1 point)

Problem 7:

Let

$$
A:=\left(\begin{array}{cc}
1 & 1 \\
2 & 1 \\
-1 & 1 \\
0 & 1
\end{array}\right) \in \mathbb{R}^{4 \times 2} \quad \text { and } \quad \mathbf{b}:=\left(\begin{array}{c}
-\frac{5}{2} \\
\frac{5}{2} \\
-\frac{5}{2} \\
\frac{5}{2}
\end{array}\right) \in \mathbb{R}^{4} .
$$

a) Calculate $A^{T} A$ and $A^{T} \mathbf{b}$.
b) Find the only vector $\mathbf{x} \in \mathbb{R}^{2}$ that solves $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
c) Calculate $\|A \mathbf{x}-\mathbf{b}\|$ for the vector $\mathbf{x} \in \mathbb{R}^{2}$ from b$)$.

Hint: $\|\cdot\|$ denotes the standard euclidean norm in \mathbb{R}^{4}.
d) Show that $A \mathbf{x}=\mathbf{b}$ has no solution. In order to show this, you can use b) and c).

Solution. (a) Calculate $A^{T} A=\left(\begin{array}{ll}6 & 2 \\ 2 & 4\end{array}\right)$ and $A^{T} \mathbf{b}=\binom{5}{0}$. (1 point)
(b) Solve the system $\left(\begin{array}{ll|l}6 & 2 & 5 \\ 2 & 4 & 0\end{array}\right)$ to $\left(\begin{array}{cc|c}6 & 2 & 5 \\ 0 & 10 & -5\end{array}\right)$ to get $\mathbf{x}=\binom{1}{-\frac{1}{2}}$ as the unique solution. (1 point)
(c) We calculate

$$
A \mathbf{x}-\mathbf{b}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{3}{2} \\
-\frac{3}{2} \\
-\frac{1}{2}
\end{array}\right)-\left(\begin{array}{c}
-\frac{5}{2} \\
\frac{5}{2} \\
-\frac{5}{2} \\
\frac{5}{2}
\end{array}\right)=\left(\begin{array}{c}
3 \\
-1 \\
1 \\
-3
\end{array}\right)
$$

Therefore the norm is given by $\|A \mathbf{x}-\mathbf{b}\|=\sqrt{9+1+1+9}=2 \sqrt{5}$ (1 point)
(d) All solutions of $A \mathbf{x}=\mathbf{b}$ have to be solution of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ as well. Hence, we only check if \mathbf{x} from (b) is a solution. However (c) tells us it is not. (1 point)

Problem 8:

Let $A \in \mathbb{C}^{n \times n}$ be selfadjoint with the property $\operatorname{spec}(A) \subset(0, \infty)$.
a) Show that $\langle A \mathbf{x}, \mathbf{x}\rangle_{\text {euclid }}>0$ for all $\mathbf{x} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$. How does one call such matrices with this property?

Hint: $\langle\cdot, \cdot\rangle_{\text {euclid }}$ denotes the standard inner product in \mathbb{C}^{n}.
b) Is A invertible? Justify your answer.
c) Give an example of such a matrix $A \in \mathbb{C}^{3 \times 3}$.

Solution. (a) Since A is selfadjoint, it is diagonalisable with diagonal matrix D and unitary X such that $X^{*} A X=D$. In the D we find the eigenvalues of A, denoted by $\lambda_{1}, \ldots, \lambda_{n}$, and we can calculate:

$$
\langle A \mathbf{x}, \mathbf{x}\rangle_{\text {euclid }}=\left\langle X D X^{*} \mathbf{x}, \mathbf{x}\right\rangle_{\text {euclid }}=\langle D \mathbf{x}, \mathbf{x}\rangle_{\text {euclid }}
$$

because X is unitary. Then we get for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ immediately:

$$
\langle D \mathbf{x}, \mathbf{x}\rangle_{\text {euclid }}=\sum_{j=1}^{n} \lambda_{j}\left|x_{j}\right|^{2} \geq 0
$$

It is only 0 if all x_{j} are zero, which is the zero vector \mathbf{o}. (2 points)
Such matrices are called positive definite. (1 point)
(b) A is invertible because all eigenvalues are positive. (1 point)
(c) One example is $A=\mathbb{1}_{3}$. (1 point)

