WISE 2018/19
Hamburg, 04.03.2019

University of Technology Hamburg
Institute of Mathematics

Dr. J. Großmann
Dipl. Phys. J. Meichsner

Final Exam for Linear Algebra

Problem 1:

a) State your surename, forename, Matrikelnummer, subject and semester at the front cover. Also give your signature. Check if all 8 problems actually are in your exam.
b) What is the rank of the following matrix $A \in \mathbb{R}^{3 \times 3}$?

Solution. That is clear!

Problem 2:

The following four vectors span a four-dimensional parallelepiped in \mathbb{R}^{4}.

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
2 \\
-1 \\
0 \\
0
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}
2 \\
-2 \\
-1 \\
0
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-3
\end{array}\right), \mathbf{v}_{4}=\left(\begin{array}{c}
0 \\
1 \\
2 \\
-2
\end{array}\right) .
$$

a) Calculate the four-dimensional volume $\operatorname{Vol}_{4}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$.
b) Is the family $\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$ linearly dependent? Justify your answer.
c) Is the matrix

$$
\left(\begin{array}{cccc}
2 & 2 & 0 & 0 \\
-1 & -2 & 1 & 0 \\
0 & -1 & 2 & 1 \\
0 & 0 & -2 & -3
\end{array}\right) \in \mathbb{R}^{4 \times 4}
$$

invertible? Justify your answer.

Solution. (a)

$$
\operatorname{Vol}_{4}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)=\operatorname{det}\left(\begin{array}{cccc}
2 & 2 & 0 & 0 \\
-1 & -2 & 0 & 1 \\
0 & -1 & 1 & 2 \\
0 & 0 & -3 & -2
\end{array}\right)=: V
$$

(1 point)
For example, expanding along the first column:

$$
V=2 \operatorname{det}\left(\begin{array}{ccc}
-2 & 0 & 1 \\
-1 & 1 & 2 \\
0 & -3 & -2
\end{array}\right)-(-1) \operatorname{det}\left(\begin{array}{ccc}
2 & 0 & 0 \\
-1 & 1 & 2 \\
0 & -3 & -2
\end{array}\right)
$$

And then use Sarrus:

$$
V=2(-5)+8=-2 .
$$

(2 points)
(b) The family is not linearly dependent because the volume they span is not zero. (1 point)
(c) The matrix is invertible because the determinant is $2 \neq 0$. Just the last two columns are switched in the determinant from A (in contrast to (a)). (1 point)

Problem 3:

Let

$$
A=\left(\begin{array}{ccc}
5 & -4 & 2 \\
4 & -3 & 2 \\
-2 & 2 & 0
\end{array}\right) \in \mathbb{R}^{3 \times 3}
$$

a) Show that $\lambda=1$ is an eigenvalue of A with geometric multiplicity 2 , and determine a basis for the corresponding eigenspace.
b) Show that $\mathbf{v}=\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)$ is an eigenvector of A, and calculate the associated eigenvalue.
c) Show that A is diagonalisable and find an invertible matrix $X \in \mathbb{R}^{3 \times 3}$ and a diagonal matrix $D \in \mathbb{R}^{3 \times 3}$ such that $X^{-1} A X=D$.
d) Find a 3×3-matrix B such that $B^{2}=A$.

Solution. (a) Calculate:

$$
\left.\operatorname{Ker}(A-1 \mathbb{1})=\operatorname{Ker}\left(\begin{array}{ccc}
4 & -4 & 2 \\
4 & -4 & 2 \\
-2 & 2 & -1
\end{array}\right) \stackrel{(I I-I}{(I I+I / 2}\right) \operatorname{Ker}\left(\begin{array}{ccc}
4 & -4 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\operatorname{Span}\left(\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right)
$$

Kernel is not trivial, hence $\lambda_{1}=1$ is an eigenvalue and the two vectors inside the span define a basis of the corresponding eigenspace. (2 points)
(b) Matrix-vector multiplication:

$$
A \mathbf{v}=\left(\begin{array}{ccc}
5 & -4 & 2 \\
4 & -3 & 2 \\
-2 & 2 & 0
\end{array}\right)\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Therefore $\mathbf{v} \in \operatorname{Ker}(A)$ which means \mathbf{v} is an eigenvector with corresponding eigenvalue $\lambda_{2}:=0$. (1 point)
(c) By part (a) and by part (b), we find a basis consisting of eigenvectors: $\mathcal{B}=\left(\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}2 \\ 2 \\ -1\end{array}\right)\right)$ (Or: $\left.\gamma\left(\lambda_{1}\right)+\gamma\left(\lambda_{2}\right)=3=n\right)$.

The wanted matrices in $X^{-1} A X=D$ are:

$$
\left.X=\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & 1 & 2 \\
0 & 2 & -1
\end{array}\right), \quad D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { (2 points }\right)
$$

(d) Because $D^{2}=D$ and $A^{2}=X D X^{-1} X D X^{-1}=X D^{2} X^{-1}=X D X^{-1}=A$, we can choose $B=A$. (1 point)

Problem 4:

Decide if the following claims are true or false and mark it with a cross. (Marking both true and false will not get you a point. You do not get minus points for wrong answers.)

	false	true
Each matrix $A \in \mathbb{C}^{n \times n}$ is similar to a triangular matrix.		X
For a matrix $A \in \mathbb{C}^{n \times n}$, the following holds: If spec (A) lies on the unit circle in \mathbb{C}, then A is not invertible.	X	
A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if $\operatorname{det}(A) \neq 0$.	X	
If \mathbf{v} is an eigenvector for the matrix A, then it is also an eigenvector for A^{3}.		X
Each $A \in \mathbb{R}^{3 \times 3}$ has at least one real eigenvalue.	X	
If $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then A^{T} is also an orthogonal matrix.		X
There is a matrix $A \in \mathbb{R}^{4 \times 5}$ that satisfies dim(Ran $\left.(A)\right)=2$ and dim $(\operatorname{Ker}(A))=3$.	X	
Each matrix $A \in \mathbb{C}^{n \times n}$ has infinitely many eigenvectors.	X	
The matrix $\left(\begin{array}{l}1 \\ 0\end{array} 1\right) \in \mathbb{R}^{2 \times 2}$ is diagonalisable.	X	

Solution. See above.

Problem 5:

Let V be an \mathbb{F}-vector space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$. Moreover, let $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ be an orthonormal basis of V.
a) Show that for all $\mathbf{x}, \mathbf{y} \in V$ the following holds:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{j=1}^{n}\left\langle\mathbf{x}, \mathbf{b}_{j}\right\rangle\left\langle\mathbf{b}_{j}, \mathbf{y}\right\rangle .
$$

b) Let $\mathbf{x} \in V$ be given as $\mathbf{x}=2 \mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{5}-3 \mathbf{b}_{7}-\mathbf{b}_{9}$. Calculate the norm $\|\mathbf{x}\|$.

Solution. (a) Since $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ is a basis, we can write \mathbf{x} in a unique way as linear combination:

$$
\mathbf{x}=\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{n} \mathbf{b}_{n} .
$$

We also know that $\alpha_{j}=\left\langle\mathbf{x}, \mathbf{b}_{j}\right\rangle$ because we have an ONB. (1 point)
Then we calculate:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left\langle\left(\alpha_{1} \mathbf{b}_{1}+\cdots+\alpha_{n} \mathbf{b}_{n}\right), \mathbf{y}\right\rangle=\sum_{j=1}^{n} \alpha_{j}\left\langle\mathbf{b}_{j}, \mathbf{y}\right\rangle=\sum_{j=1}^{n}\left\langle\mathbf{x}, \mathbf{b}_{j}\right\rangle\left\langle\mathbf{b}_{j}, \mathbf{y}\right\rangle .
$$

(2 points)
(b) Here, we can use the formula from (a):

$$
\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle=\sum_{j=1}^{n}\left\langle\mathbf{x}, \mathbf{b}_{j}\right\rangle\left\langle\mathbf{b}_{j}, \mathbf{x}\right\rangle=4+1+1+9+1=16
$$

Hence, we get $\|\mathbf{x}\|=4$. (2 points)

Problem 6:

Let $\mathcal{P}_{2}(\mathbb{R})$ be the vector space of real polynomials with degree at most 2 . For $k \in \mathbb{N}_{0}$, we denote the monomials by $\mathbf{m}_{k}: \mathbb{R} \rightarrow \mathbb{R}$, which means $\mathbf{m}_{k}(x):=x^{k}$ for all $x \in \mathbb{R}$. Let $\ell: \mathbb{R}^{3} \rightarrow \mathcal{P}_{2}(\mathbb{R})$ and $k: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be linear maps given by

$$
\ell\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right):=\left(x_{1}+x_{2}+x_{3}\right) \mathbf{m}_{0}+\left(x_{1}+x_{2}\right) \mathbf{m}_{1}+x_{1} \mathbf{m}_{2}
$$

and

$$
k(\mathbf{p}):=\binom{\mathbf{p}^{\prime}(1)}{\mathbf{p}(1)-\mathbf{p}^{\prime \prime}(1)} .
$$

Determine the matrix representation of $k \circ \ell$ with respect to the following basis \mathcal{B} in \mathbb{R}^{3} and the basis \mathcal{C} in \mathbb{R}^{2} :

$$
\mathcal{B}=\left(\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right), \quad \mathcal{C}=\left(\binom{1}{0},\binom{0}{-1}\right) .
$$

Solution. Helpful to calculate first $k\left(\mathbf{m}_{0}\right)=\binom{0}{1}, k\left(\mathbf{m}_{1}\right)=\binom{1}{1}$ and $k\left(\mathbf{m}_{2}\right)=\binom{2}{-1}$. Calculate the images of the basis vectors under $k \circ \ell$:

$$
\begin{aligned}
& (k \circ \ell)\left(\mathbf{b}_{1}\right)=k\left(2 \mathbf{m}_{0}+2 \mathbf{m}_{1}+1 \mathbf{m}_{2}\right)=\binom{4}{3}, \\
& (k \circ \ell)\left(\mathbf{b}_{2}\right)=k\left(1 \mathbf{m}_{0}+1 \mathbf{m}_{1}+0 \mathbf{m}_{2}\right)=\binom{1}{2}, \\
& (k \circ \ell)\left(\mathbf{b}_{3}\right)=k\left(2 \mathbf{m}_{0}+1 \mathbf{m}_{1}+0 \mathbf{m}_{2}\right)=\binom{1}{3} . \quad(3 \text { points })
\end{aligned}
$$

Then we get for the canonical basis \mathcal{E} in \mathbb{R}^{2} :

$$
(k \circ \ell)_{\mathcal{E} \leftarrow \mathcal{B}}=\left(\begin{array}{lll}
4 & 1 & 1 \\
3 & 2 & 3
\end{array}\right) .
$$

Since $T_{\mathcal{C} \leftarrow \mathcal{E}}=\left(T_{\mathcal{E} \leftarrow \mathcal{C}}\right)^{-1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, we get:

$$
\left.(k \circ \ell)_{\mathcal{C} \leftarrow \mathcal{B}}=T_{\mathcal{C} \leftarrow \mathcal{E}}(k \circ \ell)_{\mathcal{E} \leftarrow \mathcal{B}}=\left(\begin{array}{ccc}
4 & 1 & 1 \\
-3 & -2 & -3
\end{array}\right) . \quad \text { (2 points }\right)
$$

Alternatively, calculate the matrix representations separately:

Let \mathcal{E}_{2} be the canonical basis in $\mathbb{R}^{2}, \mathcal{E}_{3}$ be the canonical basis in \mathbb{R}^{3} and $\mathcal{M}=\left(\mathbf{m}_{0}, \mathbf{m}_{1}, \mathbf{m}_{2}\right)$ be the monomial basis in $\mathcal{P}_{2}(\mathbb{R})$. Then, we get:

$$
\begin{gathered}
(k)_{\mathcal{E}_{2} \leftarrow \mathcal{M}}=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 1 & -1
\end{array}\right), \\
(\ell)_{\mathcal{M} \leftarrow \mathcal{E}_{3}}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot(2 \text { points })
\end{gathered}
$$

Using the formula

$$
(k \circ \ell)_{\mathcal{C} \leftarrow \mathcal{B}}=T_{\mathcal{C} \leftarrow \mathcal{E}_{2}}(k)_{\mathcal{E}_{2} \leftarrow \mathcal{M}}(\ell)_{\mathcal{M} \leftarrow \mathcal{E}_{3}} T_{\mathcal{E}_{3} \leftarrow \mathcal{B}}, \quad \text { (1 point) }
$$

we get:

$$
(k \circ \ell)_{\mathcal{C} \leftarrow \mathcal{B}}=\left(\begin{array}{ccc}
4 & 1 & 1 \\
-3 & -2 & -3
\end{array}\right) . \quad(2 \text { points })
$$

Problem 7:

Let

$$
A:=\left(\begin{array}{cc}
-1 & -2 \\
-2 & 1 \\
1 & 2
\end{array}\right) \in \mathbb{R}^{3 \times 2} \quad \text { and } \quad \mathbf{b}:=\left(\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right) \in \mathbb{R}^{3} .
$$

a) Find all $\mathbf{x} \in \mathbb{R}^{2}$ that solve $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
b) Show that $A \mathbf{x}=\mathbf{b}$ has no solution. In order to show this, you can use (a).
c) Calculate the orthogonal projection of \mathbf{b} onto $\operatorname{Ran}(A)$ (with respect to the standard inner product in \mathbb{R}^{3}).

Solution. (a) First, calculate $A^{T} A=\left(\begin{array}{ll}6 & 2 \\ 2 & 9\end{array}\right)$ and $A^{T} \mathbf{b}=\binom{4}{-7}$. (1 point)
Then solve the system to get $\mathbf{x}=\binom{1}{-1}$ as the unique solution. (1 point)
(b) All solutions of $A \mathbf{x}=\mathbf{b}$ have to be solution of $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ as well. Hence, we only check if \mathbf{x} from (a) is a solution:

$$
A \mathbf{x}=\left(\begin{array}{c}
? \\
? \\
-1
\end{array}\right) \neq \mathbf{b}
$$

(1 point)
(c) $\operatorname{Ran}(A)$ is given by the $\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)$ where \mathbf{a}_{j} are the columns of A. They form a basis \mathcal{B} of $\operatorname{Ran}(A)$. To calculate the orthogonal projection, we can use the Gramian matrix $\mathcal{G}(\mathcal{B})$:

$$
\mathcal{G}(\mathcal{B})=\left(\begin{array}{ll}
\mathbf{a}_{1}^{T} \mathbf{a}_{1} & \mathbf{a}_{1}^{T} \mathbf{a}_{2} \\
\mathbf{a}_{2}^{T} \mathbf{a}_{1} & \mathbf{a}_{2}^{T} \mathbf{a}_{2}
\end{array}\right)=A^{T} A=\left(\begin{array}{ll}
6 & 2 \\
2 & 9
\end{array}\right)
$$

(1 point)
Then, we have to solve the same system as in (a) and get $\left.\mathbf{b}\right|_{\operatorname{Ran}(A)}=A\binom{1}{-1}=\left(\begin{array}{c}1 \\ -3 \\ -1\end{array}\right)$.
Alternatively, using Gram-Schmidt:
(c) First normalise:

$$
\mathbf{w}_{1}:=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)
$$

Then calculate:

$$
\mathbf{v}_{1}:=\mathbf{a}_{2}-\left\langle\mathbf{a}_{2}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}=\mathbf{a}_{2}-\frac{1}{\sqrt{6}^{2}}(2)\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
-5 / 3 \\
5 / 3 \\
5 / 3
\end{array}\right)
$$

(1 point)

Normalise again:

$$
\mathbf{w}_{2}:=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

Now calculate:

$$
\left.\mathbf{b}\right|_{\operatorname{Ran}(A)}=\left\langle\mathbf{b}, \mathbf{w}_{1}\right\rangle \mathbf{w}_{1}+\left\langle\mathbf{b}, \mathbf{w}_{2}\right\rangle \mathbf{w}_{2}=\frac{2}{3}\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)+\frac{-5}{3}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-3 \\
-1
\end{array}\right)
$$

(1 point)

Problem 8:

a) Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Show that the LES

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

always has a solution.
Hint: You may use the fact $\mathbb{R}^{m}=\operatorname{Ran}(A)+\operatorname{Ker}\left(A^{T}\right)$.
b) Let $A \in \mathbb{R}^{m \times n}$. Show that if $\operatorname{Ker}(A)=\{\mathbf{o}\}$, then the solution for the LES $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is unique.

Solution. (a) The LES has always a solution if and only if $\operatorname{Ran}\left(A^{T} A\right) \supset \operatorname{Ran}\left(A^{T}\right)$:
(ว): Choose $y \in \operatorname{Ran}\left(A^{T}\right)$. This means there is a $u \in \mathbb{R}^{m}$ with $A^{T} u=y$. Now by the hint, u can be written as $u=u_{1}+u_{2}$ with $u_{1} \in \operatorname{Ran}(A)$ and $u_{2} \in \operatorname{Ker}\left(A^{T}\right)$. So for u_{1} there is an $x \in \mathbb{R}^{n}$ such that $u_{1}=A x$. Then we get:

$$
y=A^{T} u=A^{T} u_{1}+A^{T} u_{2}=A^{T} A x+0=A^{T} A x
$$

Hence $y \in \operatorname{Ran}\left(A^{T} A\right)$. (2 points)
(b) The solution of the LES is unique if and only if $\operatorname{Ker}\left(A^{T} A\right)=\{\mathbf{o}\}$. So choose $x \in \operatorname{Ker}\left(A^{T} A\right)$, which means $A^{T} A x=$ o. Hence:

$$
0=\left\langle A^{T} A x, x\right\rangle=\langle A x, A x\rangle=\|A x\|^{2} .
$$

Since the norm is positive definite, we get $A x=\mathbf{o}$ and $x \in \operatorname{Ker}(A)$. Hence, $x=\mathbf{o}$. (2 points)

