Beh: (x_n) C.F mit HP $x => x_n$ konvergent gegen xBetw: C.F bedutet: $\forall \exists \forall \forall d(x_n, x_m) < \varepsilon$ (1) $x \mapsto \forall \exists \forall \forall d(x_n, x_m) < \varepsilon$ (1) $x \mapsto \forall \exists \forall \forall d(x_n, x_m) < \varepsilon$ (1) $x \mapsto \forall \forall \exists \forall d(x_n, x_m) < \varepsilon$ (2)

Es see num $\varepsilon > 0$. Withle num $\forall \forall \exists d(x_n, x_m) \in \exists d(x_n, x_m) < \varepsilon$ $\forall \forall d(x_n, x_m) \in \exists d(x_n, x_$

 $d(x,x_n) \leq d(x,x_n) + d(x_n,x_n) < \frac{\varepsilon}{z} + \frac{\varepsilon}{z} = \varepsilon$ and zwar for alle $n \geq N \Rightarrow x_n \Rightarrow x$

(C) Drei Richlungen zeigen: (i) \Rightarrow (ii) , (ii) \Rightarrow (iii) \Rightarrow (i).

(i) \Rightarrow (ii) . Vir solven A = X vorans, das bedecht jeder latt $x \in X$ ist ein Berührpatht von A.

[$x \in X$ ist ein Berührpatht von A.

[$x \in X$ is $x \in X$ is $x \in X$ is $x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$ is $x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

[$x \in X$ is $x \in X$.

 $\frac{(ii) = >(iii)}{B_{\epsilon}(x) \cap A \neq \emptyset} \quad \text{Wir notum num an, dass for alle } x \in X, \epsilon > 0$

 $B_{1}(x) \cap A \neq \emptyset$. Vible $Folgo X_{n} \in B_{1}(x) \cap A$ ans. (abs. Answellaxion).

Pann ist (Xn) \(A \) mit \(6W \) \(x \in X \). \(= > \) (\(\cdot i \) \(\sqrt{} \)

(ii:) => (i)

For an $x \in X$ existing the folge $(a_n) \subseteq A$ with $a_n \longrightarrow x$ $(\forall \exists \forall n \in N) \in A$ $\forall (a_n, x) < \epsilon$.

Dies bedentet abor, dass für alle E>0: $B_E(x) \cap A \neq \emptyset$.

Da jede brugebrung. U von x and aine E-trugel enthalten muss (for definitionem von "Ungebrung"), erholten wir:

For alle Ung. Uvon x gilt Un A # \$ => (i)