(b) Beh: $\left(x_{n}\right)$ C.F mit $H P x \Rightarrow x_{n}$ tonvegent gegen x

Bew:
C.F bedantet: $\quad \underset{\varepsilon>0}{\forall} \underset{N \in \mathbb{N}}{\exists} \underset{n, m \geq N}{\forall} \quad d\left(x_{n}, x_{m}\right)<\varepsilon$
x HP bedentet: $\underset{\varepsilon \times 0}{\forall}$ unendlid vicle Folgenglicha in $B_{\varepsilon}(x)$.(2)
Es ji num $\varepsilon>0$. Wähle num N nad (1) s, gap, dass $d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{2} \quad \forall n, m \geq N \quad$ gilt.

Wahken num $M \geq N$ so, dass $x_{M} \in \mathcal{B}_{\varepsilon / 2}(x)$ nad (2).
Dann gilt:

$$
d\left(x, x_{n}\right) \leq \text {-ungl. }_{\leq}^{\leq} d\left(x, x_{m}\right)+d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

und zwar fir alle $n \geq N \Rightarrow x_{n} \rightarrow x$
(c)

Dri Ridtungen zrigen: $\quad(i) \Rightarrow(i i),(i i) \Rightarrow(i i),(i i i) \Rightarrow(i)$.
(i) \Rightarrow (ii). Wir sclizm $\bar{A}=X$ voraus, das bedenht juter Puntet $x \in X$ ist ain Berabippontt von A.

$$
\left[x \text { BP won } A: \Leftrightarrow \forall U_{m g} \cdot \frac{v}{} \text { von } \times \text { silt } \quad U_{n} A \neq \phi\right]
$$

Tas Luipt aloo insbeoondere: Far alle $x \in X, \varepsilon>0$ gilt

$$
B_{\varepsilon}(x) \cap A \neq \phi \quad \Rightarrow(i i)
$$

(ii) \Rightarrow (iii) Wir nuchmm nm an, dars fir alle $x \in X, \varepsilon>0$ $B_{\varepsilon}(x) \cap A \neq \phi$. Also insbesondere fir alle $n \in \mathbb{N}$: $B_{\frac{1}{n}}(x) \cap A \neq \phi$. Wähle Folge $x_{n} \in B_{\frac{1}{n}}(x) \cap A$ aus. (abz. Answablaxiom).

Dann ist $\left(x_{n}\right) \subseteq A$ mit GW $x \in X . \Rightarrow$ (i:i)

$$
(i i i) \Rightarrow(i)
$$

Far ain $x \in X$ cxishint ame Folge $\left(a_{n}\right) \subseteq A$ mit

$$
a_{n} \rightarrow x \quad\left(\underset{\varepsilon>0}{\forall} \quad \underset{N \in \mathbb{W}}{\exists} \quad \underset{n, n \geq N}{\forall} \quad d\left(a_{n}, x\right)<\varepsilon\right) .
$$

Dies belentet abor, dars fir alle $\varepsilon>0$:

$$
B_{\varepsilon}(x) \cap A \neq \phi .
$$

Da jack Unugdingy U won x and aine ε-tangel enthaltion muss (ger definitionam von "(lungehung"), crialten wir:

Far alle ung. Uvon x gilt $U_{n} A \neq \varnothing \Rightarrow$ (i)

