Universität Erlangen-Nürnberg

Wintersemester 2015/16

Vorlesung Functional analysis and operator theory

Aufgabenzettel 4

Department Mathematik

H. Schulz-Baldes

Aufgabe 1: Sei $C^1([0,1])$ der Raum aller stetig differenzierbaren Funktionen auf [0,1] versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$. Betrachten Sie den Ableitungsoperator

$$D: (C^1([0,1]), \|\cdot\|_{\infty}) \longrightarrow (C([0,1]), \|\cdot\|_{\infty}), \qquad Df = f'.$$

Zeigen Sie, dass D linear ist, einen abgeschlossenen Graphen hat, aber nicht stetig ist.

Aufgabe 2: Seien X und Y zwei normierte Räume, die beide nicht gleich $\{0\}$ sind. Zeigen Sie, dass folgende Aussagen äquivalent sind.

- (i) Jeder nichttriviale lineare und stetige Operator $U: X \to Y$ ist offen.
- (ii) Jeder nichttriviale lineare und stetige Operator $U: X \to Y$ ist surjektiv.
- (iii) $\dim_{\mathbb{K}}(Y) = 1$.

Aufgabe 3: Seien X, Y Banachräume. Zeigen Sie:

(a) $(x_n)_{n\in\mathbb{N}}$ ist genau dann eine Cauchy-Folge in X, wenn $(S(x_n))_{n\in\mathbb{N}}$ für alle $S\in B'=\{S\in X'\mid \|S\|\leq 1\}$ eine $gleichmä\betaige$ Cauchy-Bedingung erfüllt, d.h. wenn gilt

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, \ m \ge n_0, S \in B' : \ |S(x_n) - S(x_m)| \le \epsilon.$$

- (b) Ist $T \in \mathcal{B}(X,Y)$, so ist die transponierte Abbildung $T': Y' \to X'$ definiert durch $T'(S) = S \circ T$ für $S \in Y'$. Zeigen Sie, dass T' genau dann stetig invertierbar ist, wenn dies für T gilt.
- (c) Zeigen Sie, dass $\sigma(T) = \sigma(T')$ für X = Y gilt.

Aufgabe 4: Sei T der Linksshift auf ℓ^1 , d.h. $T(x_1, x_2, \dots) = (x_2, x_3, \dots)$ und S der Rechtsshift auf ℓ^{∞} , d.h. $S(x_1, x_2, \dots) = (0, x_1, x_2, \dots)$. Zeigen Sie:

(a)
$$\sigma(T) = \sigma(S) = \{\lambda \in \mathbb{C} \mid |\lambda| \le 1\}.$$

(b) Zeigen Sie, dass die offene Einheitskugel $\mathbb{D}=\{\lambda\in\mathbb{C}\mid |\lambda|<1\}$ zum Punktespektrum von T gehört, aber nicht zum Punktespektrum von S. Zudem hat $\lambda\mathbf{1}-S$ für $\lambda\in\mathbb{D}$ kein dichtes Bild. (Also gehört \mathbb{D} zum sogenannten $residuellen\ Spektrum\ von\ S$).

Aufgabe 5: Sei

$$T: C([0, 1]) \to C([0, 1]), \qquad (Tx)(s) = \int_0^s x(t) dt.$$

Geben Sie das Spektrum von ${\cal T}$ an.

Aufgabe 6: Sei $X=\{x\in L^\infty([0,\,1])\mid \ x \ \text{ist stetig bei}\ 0 \ \text{und}\ 1,\, x(0)=0\}$ und

$$T: X \to X, \qquad (Tx)(s) = sx(s).$$

Bestimmen Sie das Punktspektrum $\sigma_p(T)$, das stetige Spektrum $\sigma_c(T)$ und das Restspektrum $\sigma_r(T)$ von T.