Universität Erlangen-Nürnberg Vorlesung Functional analysis and operator theory Aufgabenzettel 2 Department Mathematik H. Schulz-Baldes

Aufgabe 1: Zeigen Sie die folgenden Gleichheiten für Dualräume von Folgenräume:

$$(c_0)' = \ell^1 \qquad (\ell^1)' = \ell^\infty$$

Aufgabe 2: Sei X ein normierter Raum und $U \subset X$ ein abgeschlossener Unterraum. Des weiteren sei gegeben $x \notin U$. Zeigen Sie, dass ein $T \in X'$ existiert mit $T(x) \neq 0$ und T(u) = 0 für alle $u \in U$.

Aufgabe 3: Zeigen Sie, dass jedes lineare und stetige Funktional auf c_0 eine eindeutige Hahn-Banach Erweiterung auf ℓ^{∞} besitzt.

Aufgabe 4: Zeigen Sie: Ein abgeschlossener Unterraum eines reflexiven Banachraumes ist reflexiv.

Aufgabe 5: Sei X ein Banachraum. Für alle linearen stetigen Operatoren $A, B \in \mathcal{B}(X)$ definiert man $T_{A,B}: \mathcal{B}(X) \to \mathcal{B}(X)$ durch $T_{A,B}(S) = ASB \ \forall S \in \mathcal{B}(X)$. Zeigen Sie, dass aus der Kompaktheit von A und B auch die Kompaktheit von $T_{A,B}$ folgt. Verwenden Sie hierfür folgende Verallgemeinerung des Satzes von Arzela-Ascoli: Sei $\mathcal{A} \subset C(\Omega,X)$ eine Familie stetiger Funktionen auf einem kompakten Raum Ω in einem Banach-Raum X, die gleichgradig stetig und punktweise relative kompakt ist (d.h. $\{f(\omega) \in X | f \in \mathcal{A}\}$ ist relativ kompakt für jedes $\omega \in \Omega$), dann ist \mathcal{A} kompakt.

Aufgabe 6: Sei $(x_n)_{n\geq 1}$ eine Folge im Hilbertraum \mathcal{H} mit $||x_n||=1 \ \forall n\in\mathbb{N}$ und $\langle x_n\mid x_m\rangle=\frac{1}{2015}$ für $n\neq m$. Zeigen Sie, dass diese Folge schwach konvergent ist. D.h. es gibt ein $x\in\mathcal{H}$ mit

$$\langle x_n \mid y \rangle \stackrel{n \to \infty}{\longrightarrow} \langle x \mid y \rangle \qquad \forall y \in \mathcal{H}.$$

Konstruieren Sie ein Beispiel für eine solche Folge.