Restgliedformeln

1. Restgliedformel von Taylor

Ist $f: D \to \mathbb{R}$ mindestens (n+1)-mal differenzierbar, $D \subseteq \mathbb{R}$ offenes Intervall und $x_0 \in D$ so gilt für das Restglied für das n-te Taylorpolynom bei x_0 :

$$R_{n+1}(x) = \int_{x_0}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt$$

Beweis: Hauptsatz der Integralrechnung + Partielle Integration

2. Restgliedformel von Lagrange

Ist $f: D \to \mathbb{R}$ mindestens (n+1)-mal differenzierbar, $D \subseteq \mathbb{R}$ offenes Intervall und $x_0 \in D$, so existiert ein $\xi \in [x_0, x]$ bzw. $\xi \in [x, x_0]$ und es gilt:

$$R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Bemerkung: ξ hängt natürlich von der Wahl von x ab! Beweis:

Die Funktion $f^{(n+1)}$ ist nach Voraussetzung stetig und nimmt daher auf $[x_0, x]$ bzw. $[x, x_0]$ ein Maximum bei x_M und Minimum bei x_m an. Dann folgt mit (1.1):

$$R_{n+1}(x) = \int_{x_0}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt \le f^{(n+1)}(x_M) \int_{x_0}^{x} \frac{1}{n!} (x-t)^n dt = f^{(n+1)}(x_M) \cdot \frac{(x-x_0)^{n+1}}{(n+1)!}$$

$$R_{n+1}(x) = \int_{x_0}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^n dt \ge f^{(n+1)}(x_m) \int_{x_0}^{x} \frac{1}{n!} (x-t)^n dt = f^{(n+1)}(x_m) \cdot \frac{(x-x_0)^{n+1}}{(n+1)!}$$

Also:

$$f^{(n+1)}(x_m) \cdot \frac{(x-x_0)^{n+1}}{(n+1)!} \le R_{n+1}(x) \le f^{(n+1)}(x_M) \cdot \frac{(x-x_0)^{n+1}}{(n+1)!}$$

Nach dem Zwischenwertsatz existiert also ein $\xi \in [x_0, x]$ bzw. $\xi \in [x, x_0]$.

3. Abschätzung des Restgliedes

Wähle C so, dass $|f^{(n+1)}(\xi)| \leq C$ für alle $\xi \in [x_0, x]$ bzw. $\xi \in [x, x_0]$ gilt:

$$|R_{n+1}(x)| \le \frac{C}{(n+1)!} |x - x_0|^{n+1}$$